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Abstract 
 

Cost surfaces are a useful tool for solving many spatial analysis problems. However, GIS tools are 
limited when used to compute cost surfaces. This is primarily because they can only deal with isotropic 
frictions or, at best, they use a very limited definition of anisotropic friction that only considers local 
information, thereby generating unnatural paths. 
 

This paper proposes a novel algorithm for computing anisotropic cost surfaces from a cell traversing 
cost which not only incorporates the direction of movement, but also the change of direction. As such 
we can solve real-world anisotropic problems, such as the design of roads. The paper also describes the 
implementation of this approach on GRASS GIS.  

 

1    Introduction 
 

Cost surfaces are widely used to solve spatial analysis problems and compute least-cost paths. A cost 
surface can be defined as a function that, for a given friction function f(x), assigns the least cost to traverse from 
an initial region S to any point Q on the working region:  
 (1) 

The friction 
function f(x) 
indicates the cost of 
moving at point x. This cost may represent time, distance, economic cost or any other parameter.  

 

Cost surfaces can be computed using Dijkstra’s algorithm [1], which takes a graph as input. The edges of 
this graph are weighted, storing the cost of displacement between two linked nodes. GIS systems usually use a 
raster map to store frictions. Every cell in the friction map contains the cost of crossing the cell, either in a fixed 
direction (E-W) or per unit length. The graph derived from the connectivity relationships on the map is used to 
apply Dijkstra’s algorithm. 

 

Therefore, this approach poses two limitations: the discretization of the movement directions and the 
use of isotropic frictions. 
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Figure 1: Comparison of  the proposed approach for computing an anisotropic path (red) with the 

isotropic path (blue) and the previous proposal for anisotropic cost surface algorithms (black). The right-hand 
image shows a close-up of  a section of  the path.  

 

Some approach has been used to overcome the limitation of movement directions. Antikainen [2] 
proposes to use large connectivity pattern between raster cells to improve the quality of the generated paths. 
Dean [3] proposes to use a Triangulated irregular network to allow unlimited movement directios. Several 
authors have addressed anisotropic cost problems by proposing very specific computation methods. Dean et al. 
[4] study the impact of linear hydrological features with high crossing costs on least-cost paths and proposes a 
method to treat them. Collischonn and Pilar [5] and Yu et al. [6] addressed the design of roads and channels, 
wherein they proposed an algorithm that computes the path directly from the digital elevation model without 
representing friction. Saha et al. [7] planned mountain routes using a similar approach to the one proposed by 
Collischonn [5], but considering more movement directions and adding thematic maps to restrict movement. 
Cooper [8] modeled mobility in Pre-Columbian Cuba using the r.walk function of GRASS GIS, which computes 
cost surfaces for walking movements [9]. Bevan [10] analyzed different approaches for computing walking 
distance maps of Crete during the Bronze Age. LeidWanger [11] studied mobility on the oriental Mediterranean 
Sea to analyze cultural relationships in Ancient Greece. LeidWanger used the ArcGIS Path Distance functions to 
compute friction from the average wind direction. Nuñez et al. [12] applied cost surfaces to estimate corridors 
for the movement of species using r.walk, and adapted the temperature map using it as an elevation model. 

 

Furthermore, there are problems for which the friction depends not only on the position and movement 
direction, but also on the change in the direction of movement. Examples of such an instance are a road path, a 
pipeline or an electric power line. Choi and Nieto [13] and Baek and Choi [14] study the computation of off-road 
dump truck least-cost paths, using an algorithm derived from the one proposed by Collischonn and Pilar [5]. 
They compute the friction from the elevation map adding a cost for the change of direction that is a function of 
the angle between the incoming and the outgoing directions. This approach can be used only when the friction is 
a linear function of the elevation. 

 

Although one of the best known purposes of cost surfaces is the computation of least cost paths, there 
are many other problems that have been solved by means of cost surfaces: computing influence areas [15], 
computing accessibility [16], resource allocations [17], interpolation [18], planning [12], generating routes with 
minimum pollution exposure [19], among others. To solve these problems it is necessary to compute the cost 
surface from a friction maps. 

 

None of the methods previously described compute anisotropic cost surfaces from a friction function. 
Moreover, most of them do not represent friction. For instance some of them derived the friction from an 
elevation map, thus limiting their application to problems in which friction is a function of elevation. 

 

To solve general anisotropic cost computation problems, we need an anisotropic cost surface generation 
algorithm that takes an explicit representation of the anisotropic friction as input. 

 

This paper presents a novel and general approach for computing both cost surfaces and least-cost paths 
for anisotropic problems in which the friction considers the change in the direction of movement. The proposed 
approach generates natural paths that do not exhibit a macro-scale isotropic behavior (see Figure 1). The main 
contributions of this paper are:  
 

• A new representation of  friction for anisotropic cost computation problems.  
• A new algorithm for computing anisotropic cost surfaces.  
• A new algorithm for computing least-cost cost paths from anisotropic cost surfaces.  

 

The rest of this paper is structured as follows. Section  

2 reviews previous approaches to computing anisotropic cost surfaces. Our approach is presented in 

Section  

3. Section  

4 describes the implementation developed for GRASS. Finally, Section 5 presents some case studies and 
an evaluation of our method. 
 

2    Previous work 
 

IDRISI Software [20] includes the varcost function which computes anisotropic cost surfaces. It expresses 
the anisotropic friction as the maximum friction in each cell (represented as magnitude and direction maps) and a 
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function which describes how friction varies with the direction of movement. This function is the same for all 
the regions [21]. 
 

GRASS includes the r.walk function [22], which also computes anisotropic cost surfaces, although it uses 
an isotropic friction map and an elevation map from which anisotropic cost is computed based on the formula of 
Langmuir et al. [23].  

ArcGIS includes a path distance function [24] that can perform a similar functionality as r.walk and 
varcost. Gietl et al. [25] compared these three GIS packages (IDRISI, GRASS and ArcGIS) and presented a 
comparative case study in a high alpine environment. 

 

To the best of our knowledge, only Valdez et al. [26] and Romo et al. [27] have previously suggested the 
use of cost surface computation to solve anisotropic problems using friction maps. 

 

Valdez and Dean [26] proposed an anisotropic cost spreading algorithm that used eight unit cost maps 
as inputs, each representing the friction for one of the eight possible directions of movement from the center of 
one cell to the center of an adjacent cell. 

 

Romo and Torres [27] used a similar approach to compute anisotropic cost surfaces and least-cost paths 
with either eight or sixteen unit cost maps, applied them to road design and model dispersion processes. 
Nevertheless, these approaches evaluated anisotropy at cell level, so they may produce paths consisting of a 
sequence of zig-zags, as shown in Figure 1. The segments of these paths are usually only one cell long, and 
therefore, the resulting path exhibits a macro-scale trajectory similar to that of an isotropic path, as shown in 
Figure 1.  

 

One of the main differences between the above approaches for solving anisotropic cost surfaces is how 

they represent friction. Friction for isotropic problems is easily represented as a cell traversing cost, as explained 

in Section  

1. However, for anisotropic problems, cost must be associated with the direction of movement. This has 
been done in different ways: 
 

(1) Assigning every cell a minimum crossing cost and direction, and assuming a fixed distribution of  cost for other 
directions.  

(2) Deriving the friction as a function of  a digital elevation model, computing the friction using a predefined formula 
applied to the elevation values.  

(3) Assigning every cell a cost of  movement to each adjacent cell, which implies using a directional friction map for 
every possible direction of  movement. Note that there is no need to use more cost maps than permitted 
connections to adjacent cells.  
The IDRISI varcost function uses the first approach. GRASS r.walk function, Collischon et al. [5] and Yu et al. [6] 
used the second one, while Valdez et al. [26] and Romo et al. [27] used the third approach. The third is more 
general than the other two. Nevertheless, it may produce paths that are isotropic at a macro scale. This paper 
presents a new cost surface computation method that takes the third approach and adds a cost for changing the 
direction of movement in order to represent the friction. 
 

3    Proposed approach 
 

The shortest path problem with turning costs has been well studied on vector maps ([28] and [29]), but it 
has not been addressed on raster representations. 

 

We propose to represent the friction using a function that depends on the position, the direction of 
movement and the change in the direction of movement. Let us represent a path in parametric form as P(t), 
where the parameter t traverses the path from the starting point (t=0). Thus position Q on the path can be 
identified by the parameter tQ, a value for which  P(tQ)=Q. The friction can then be expressed as: 

  (2) 
 

where P(t) is the position 

at point t and 𝑠  𝑡 is the 

direction of movement, that is, the direction of vector 
𝑑𝑃 𝑡 

𝑑𝑡
, so  

  (3) 
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The variable t can be understood, without loss of generality, as time if the path is considered as the trajectory of a 

moving object. The derivate 
𝑑𝑠  𝑡 

𝑑𝑡
 is the change in direction of movement along the path, which is related to the 

path curvature. 
We separated the friction into two components:  

  (4) 
 

 
The first component, the anisotropic friction Fa, encapsulates the dependency on the position and the 

direction, while the second, Ft, is the contribution of the change in direction of movement, which we shall call 
the turning friction. In this way, we can use different representations for both components.  

 

While the number of possible directions of movement is limited (usually eight or sixteen), the first 
component, , can be represented as a set of raster maps, each storing the value of the friction for a given 
direction, which follows the approach proposed by Valdez [26] and Romo [27]. Each cell on these maps stores 
the cost of moving to the current cell following a fixed direction of movement. 

 

The turning friction can be global for the whole region or depend on the position. In the former case, 
the second component of the friction, Ft, is independent of the position, and so it can be represented as a 
function of the angle (see Figure 2). We have decided to use a global quadratic function of the angle, as it is 
simple and allows us to solve the most common problems without increasing the complexity of the system. 

 

Figure 2: Turning friction is computed as a function of  the incoming direction to the current cell, Si, 
andthe incoming direction to the previous one,  Si-1. 

 

To compute the cost of a path, Equation 1 must be integrated along the path. This integral is computed 
as the sum of the friction for every cell in the path. The contribution of the i-th cell of the path is  
  (5) 

 
 

where Fa(i,Si)  is the cost of moving from the previous cell, i−1, to the actual cell, i, which is a function 
of both the position (i) and direction of movement (Si). Ft(Si,Si-1) is the turning friction for the last movement, in 
other words it is a function of the angle between Si and Si-1,where Si is the incoming direction to the current cell 
and Si-1 is the incoming direction to the previous one (see Figure 2). Note that Si-1 is the input direction at cell i−1 
and Si is the output direction at cell i−1. 
 

To develop a flexible and compact specification of the turning friction, Ft, we used two parameters 
k1and k2 to describe it as follows: 

  (6) 
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where α is the angle between Si and Si-1,  k1the cost added by turning an angle of  22.5º, and k2 is the ratio 
at which the cost increases when the angle is increased. The value of  1 for k2  indicates linear growth. Note that 
the algorithms are independent of  the representation of  the turning friction function. 
 

4    Implementation 
 

To compute the inertial anisotropic cost surface we have adapted Dijkstra’s algorithm provided by the 

r.cost GRASS GIS function. As explained in Section  

3, we used two components to represent the friction. The first corresponds to the non-inertial 
component, which is stored using one directional friction map per permissible movement direction. Each cell in 
a given directional friction map contains the cost of moving from said cell following the direction specified by 
the map, instead of the cost of crossing it.  

 

To simplify the nomenclature for these maps, they are named by sharing the same root and adding a 
suffix that indicates the direction of movement. 
 

The second component is the inertial friction due to the change of direction of movement, which 
depends on the angle between the incoming and outgoing directions (α in Figure 2). 

 

 
Figure 3: Cost surface computation using the proposed algorithm takes directional friction maps as input 

(one for every possible movement direction, eight in this example) and generates one cost surface map for every 
possible incoming direction. Incoming direction output maps store the incoming direction when entering the 
previous cell. 

 

When using anisotropic frictions, we cannot guarantee that a cell is reached from its neighbor with the 
lowest cost, so we must generate a map that stores the incoming directions. Moreover, we need to know the 
incoming direction entering the previous cell to compute the turning cost. Our implementation computes a set of 
incoming direction maps, direction mapsi , one for every possible direction of movement, si. Each map stores the 
incoming direction entering the previous cell when the current cell is reached from the direction indicated by the 
map. 

 

The proposed algorithm takes as input the initial cells, eight directional friction maps (or sixteen when 
knight moves are considered), and the coefficients defining the inertial friction as a function of the change of 
direction of movement The output of the algorithm is a set of eight or sixteen cost surface maps (one for each 
incoming direction, called accumulated_map in the algorithm) and a set of maps, named direction_maps. The 
direction_maps contain the incoming direction entering the previous cell for each incoming direction (see Figure 3). 
The pseudo-code of the cost surface computation is shown in Algorithm 1. 
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The algorithm uses a heap of cells with a tentative value for their cost, sorted by cost value. For each 
cell, the heap contains its row and column, its provisional cost and the direction from which the cell was reached.  

 

This heap is initialized with the initial cells (line 1), inserting the row and column, the initial cost of the 
starting cells and null as previous directions in the heap. We can set the starting direction by inserting only the 
cell after the initial cell following the starting direction in the heap. 

 

The variable accumulated_map is a set of eight or sixteen cost surface maps that will contain the output 
cost surface for the different incoming directions (line 2). The variable  direction_maps is the set of maps 
containing the incoming direction entering the previous cell. The cells of these maps are initialized to null (lines 2 
and 3). 

 

The proposed algorithm follows Dijkstra’s scheme and iterates taking the cell with the lowest cost off 
the heap (lines 4 to 7) until the heap is empty. The variable  current_cost is assigned the previously computed cost 
of the extracted cell. The function get_cell(heap) take off the cell on top of the heap. 

 

The cost obtained from the heap for each extracted cell,  min_cost, is compared with the current cost on 
the  accumulated_map corresponding to the direction of movement (line 8). This is necessary because a lower cost 
could have has been computed for the cell after this element was inserted in the heap. In this case, the newly 
extracted cost must be ignored. Otherwise, every neighbor cell is visited (line 9) and the cost of traveling to it 
from the newly extracted cell is computed. This cost is computed by adding the traversing cost between the two 
cells according to their relative direction, which is obtained from the input friction map cost_map[out_dir][row, col]  
(line 13) and the cost associated with the change of direction of movement between the directions out_dir and 
in_dir (line 14). Here cost_map[out_dir][row, col] denotes the cell [row,col] of the cost surface for the out-going 
direction out_dir and turningCost is the function for computing the friction due to the change of direction of 
movement (6). The function turnigCost[angle(out_dir, in_dir)]  computes the turning cost due to the change of 
direction of movement from the incoming direction, in_dir, to the out-going one, out_dir. If the cost computed, 
total_cost, is smaller than the cost previously computed for the neighbor cell,  current_cost, then the cost is 
assigned to this neighbor cell and it is inserted in the heap (lines 17 to 20). 
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Figure 4: Scheme of  the least cost path computation algorithm. 

 

The least cost path computation algorithm takes as an input the destination cell, the set of cost surface 
maps and the set of incoming directions maps generated by the cost surface algorithm and optionally the 
incoming direction to the destination cell. The algorithm follows back the link stored at the incoming direction 
maps (see Figure 4). The pseudo-code for the least cost path algorithm is shown in Algorithm 2. 
 

 
The algorithm starts by reading the destination cell and the incoming direction (lines 1 to 3).  
If the incoming direction is not provided, it selects the direction with the lowest cost (lines 4 to 12).  

 

Once the incoming direction for the destination cell has been assigned, we returned back along the path 
until we reach the starting cell (line 14). At each step, we computed the coordinates to the previous cell according 
to the direction vector, previous_direction (line 15). This computation is straightforward. For instance, if the 
direction of the previous movement (from the cost surface origin) is North, then the next cell (from the path 
destination) is to the South. 
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Subsequently, we updated the direction to the one from which we arrived at the previous cell, referring 

to the corresponding direction map (line 16). We then added a segment to the output path map (line 17).  
 

Finally, the variables were adjusted for the next iteration (line 18 and 19), the algorithm iterates until it 
reaches a cell for which the  previous_dir value is null. 

 

The current application accepts several starting points. In this case the algorithm is computed inside a 
loop for each of them. 

 

It is easy to prove that the computational complexity of the cost surface algorithm is the same as the 
isotropic one because the loop structure is the same. For the current implementation, using a heap, the 
complexity is O(nlog(n)), being n the number of cells. The complexity of the least-cost path computation 
algorithm is obviously linear, as it depends on the length of the path and can be bounded by O(n), being n the 
number of cells in the path. 

 

5    Results 
 

We performed several tests to assess the quality of the proposed method. The new approach was 
compared with previous methods (the anisotropic cost surface method proposed by Valdez [26] and Romo [27] 

and the least cost road computation method proposed by Collischonn [5]. Tests were performed on an Intel® 
Core i7 personal computer with 32GB of RAM, running GRASS 7.3 on Ubuntu Linux 16.04. This section 
describes some of these tests. 

 

To allow reproducibility, all the details about the generation of the data sets and running the tests are 
included in Appendix A. 

 

Although the proposed method generated both cost surfaces and least-cost paths the figures in this 
section show the generated paths, as it is easier to identify the behavior of the method on single paths than on 
the complete cost surface. 

 

5.1    Alpujarra mountain road 
 

This test compared roads designed using our algorithm against real mountain roads and those generated 
using anisotropic friction without an inertial component. To do so, we used real data from an abrupt area in 
southern Spain. We choose this area because there is a sharp mountain road with which we can compare the 
results. 

 

The altitude in the area ranges from 508 to 1027 meters. The size of the generated DEM map is 3420 x 
4740 cells. Figure 5 shows a 3D view of this model (see Appendix for details). 

 
 
Figure 5: 3D 
view of  the 
Alpujarra test 
case. 

First, the 
anisotropic 
friction maps 
were generated 
with raster 
algebra, using 
the following 
expression to compute the cost to move from cell i to cell j:  

  (7) 
 

where slope(i,j) is the slope of  the line from cell i to the neighboring cell j and distance(i,j) is the distance from cell i 
to cell j. Parameter α controls the contribution of  the slope to the cost and parameter β the contribution of  the 
distance. In this case study, the following values were used: α=100, β=1 and maxSlope=0.2. Note that this cost is 
computed as a set of  maps, one for every possible movement direction.  
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The anisotropic cost was computed using the coordinates 461621,4085201 as a starting point, which 
correspond to the road crossing at the bottom of Figure 5. Values 3 and 4 were used for the inertial coefficients 
k1and  k2, respectively.  

 

The shortest path was computed using the anisotropic drain function for the destination point 
461755,4086564 and an easterly incoming direction, which corresponds to a high slope trajectory (see Figure 6).  
 

Figure 6: Result for the mountain road case. The real road is drawn in black, the anisotropic path is shown 
in blue, the isotropic cost in green and the inertial anisotropic path in red. 

 

To make comparisons with the non-inertial anisotropic cost proposed by Valdez [26] and Romo [27], a 
new cost surface was computed setting the turning friction to zero. The resulting path is shown as a blue line in 
Figures 6, 7 and 8.  

 

The isotropic path was computed using the r.cost and r.drain GRASS commands, using the average of the 
anisotropic frictions as isotropic friction. Results are shown in Figures 6, 7 and 8 in green. Current roads are 
shown in black lines while our inertial anisotropic path is in red. 
Figure 7: 3D 
view of  the 
mountain road 
case. The real 
road is drawn in 
black,the 
anisotropic 
path is shown 
in blue, the 
isotropic cost in 
green and the 
inertialanisotro
pic path in red. 

     
 

Figure 8: Details of  the mountain road case. The real road is drawn in black, the isotropic cost in green, the 
anisotropic path is shown in blue and the inertial anisotropic path in red.  
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We can see that the inertial path (red line) climbs following a trajectory with a uniform slope and few 

bends. It has 10 bends, while the real road has 19. In contrast, the non-inertial anisotropic path produces a very 
large number of bends. In fact, the wide segments of the blue line in Figure 6 are a narrow zigzag, which are 
more easily observed in the detailed image in Figure 8. In this path, it is possible to distinguish a micro-scale 
trajectory (which takes into account the anisotropy) and an isotropic macro-scale trajectory. The macro-scale 
trajectory, which can be understood as the smoothed or generalized trajectory, does not consider the anisotropic 
nature of the problem. In fact, the smoothed trajectory of the anisotropic path is similar to the isotropic path; 
both climb crossing perpendicular to the elevation contours. 
 

5.2    Conical DEM 
 

This test was designed to compare our approach with the least cost road computation method proposed 
by Collischonn et al. [5]. We created a synthetic conical digital elevation model like the one used by Collischonn 
et al. [5]. The DEM was created using map algebra (see Appendix A.2 for details). Anisotropic directional friction 
was computed by applying Equation 7 using values of α=1000 and β=1. 

 

The high value of α in this case produced a high value of friction due to slope. Using these values it 
would be preferable to move twice the distance across a flat area than to move up a path with a 1.1% slope. 

 

The inertial component was computed by setting the coefficients k1to 30 and k2to 2. These values 
introduce an additional cost of 30 (three times the cost of crossing a flat cell) for turning 22.5º. This cost 
increases to 120 for a turn of 45º and to 270 for a turn of 67.5º. Therefore turning 22.5º four consecutive times 
has the same cost as turning 45º just once.  

 

The actual values of parameters k1 and k2 are not relevant when testing the algorithm. They are included 
here to facilitate reproduction and to demonstrate their physical meaning with regards to the actual problem. 

 

The results are shown in red on Figure 9, in comparison with the anisotropic (in blue) and the isotropic 
paths (in green).  

 

We can see that the inertial path climbs following a trajectory with a constant slope and curvature. 
 

The isotropic cost path climbs following a straight line. The anisotropic path again exhibits a dual 
behavior. At a micro-scale level, it considers the anisotropy of the friction, but at a macro-scale it climbs 
following a straight path as the isotropic path. The path computed by Collischonn et al. [5] climbs smoothly but 
features sharp bends. 
 

 
Figure 9: Result for the cone case. 3D view on the left and map on the right. The isotropic path is shown in 
green, the anisotropic path in blue and the inertial anisotropic path in red. 
 

5.3    Stelvio pass 
 

These tests aimed to show the influence of the different parameters on the resulting path and to perform 
a quantitative evaluation of the paths generated by the proposed algorithm. We used real elevation data of a 
mountain pass in northern Italy. The working region was 11 x 17 km with a 1 m resolution, and the elevation 
ranged from 1200 to 3800 m (see Appendix A.3 for details). 

 

As the goal of this test is to show the value of the parameters used to compute the turning friction we 
run our algorithm with different values of k1and k2. Figure 10 shows some of the paths computed based on this 
model and Figure 11 shows one section in detail. The two figures reflect the behavior previously described for 
the isotropic and anisotropic paths and that the number of bends in the different inertial paths depends on the 
cost used for the turning friction coefficients. 
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Figure 10: Map of  the Stelvio pass comparing the highway (in black), the isotropic path (in green), the 
anisotropic one (in blue) with several paths generated by the proposed method using different values for the 
parameters for the turning friction.  

 

 
Figure 11: Detailed view of  the central section of  the Stelvio pass case study.  
 

To perform a numerical evaluation of the paths we computed the length, the average slope and the sum 
of absolute angles for all the bends. The average slope was computed as the average absolute value of slopes, 
using the following expression: 

  (8) 

Where Siis the slope of  segment i and Li is the length of  the segment. Appendix A.3 gives a detailed 
explanation of  how these parameters were obtained from the vector maps representing the paths.  

 

The paths generated from the proposed algorithms using different values for the turning cost were 
compared with the isotropic and anisotropic paths and with the highway. The numerical results are shown in 
Table 1. Two different values for the slope of the highway are reported: the real road slope (7.3) and the one 
computed using the interpolated high-resolution elevation model (16.7). 
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Path Length (m) # Turns Slope 

Highway 26740 54.8 7.3 (16.7) 

Isotropic 15352 563.6 13.36 

Anisotropic 22843 2125.4 9.60 

k1 = 3, k2 = 1 21308 28.8 10.44 

k1 = 3, k2 = 4 20574 20.2 10.82 

k1 = 3, k2 = 6 18936 13.1 11.81 

k1 = 100, k2 = 4 15911 3.0 14.41 

Table 1:    Numerical comparative of  different paths. 
 

We plotted the values in Table 1 using a three axis representation to facilitate the visual comparison (see 
Figure 12). Note that the turns axis is using a logarithmic scale. The data show the high value for the sum of 
absolute angles for the bends in the anisotropic path and how this value can be controlled using the proposed 
algorithm. It can be seen that changing the turning friction is is possible to obtains paths ranging from 2.5 turns 
(for k1=100 and k2=4 ) to 2500 (for  k1=k2=0 that correspond to the anisotropic path). Changing the turning 
cost influence the slope of the path because the relative contribution to the friction of the slope is increased 
when the turning friction is decreased.  

 

 
Figure 12: Graphical comparison of  the different paths for the Setelvio pass case study.  
 

6    Conclusions 
 

Cost surfaces are a powerful GIS tool and can be used to solve many different problems. They hold, for 
each cell, the integration of a friction function along the least-cost path from a given starting area. Isotropic 
friction is usually represented as a friction map. However, this representation cannot be used to solve anisotropic 
problems, as the friction depends on the direction of movement in such cases. A small number of algorithms 
have been developed for computing anisotropic cost surfaces. These algorithms are very limited as they impose 
strong restrictions on the friction function. The most general method to compute anisotropic cost surfaces is the 
one proposed by Valdez et al. [26] and Romo et al. [27], but even these do not take into account the contribution 
of the inertia to the friction, that is the cost of changing the direction of movement. Neglecting inertia may 
produce paths featuring a dense sequence of short zigzag segments, which are quite unnatural. We have shown 
that anisotropic paths generated using these approaches have a macro-scale trajectory that is similar to that 
obtained using isotropic cost surface, which is probably why they have not become widespread. 

 

In the present paper, we have proposed a new algorithm for computing anisotropic cost surfaces that 
considers real anisotropic friction functions, including inertia. The proposed method adds a component to the 
friction due to inertia that depends on the change of direction based on a quadratic equation. Our method 
generates smooth paths that do not exhibit a micro scale isotropic behavior.  
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The proposed algorithm generalizes the one put forward by Valdez et al. [26] and Romo et al. [27], 
because the result of their algorithms can be obtained with the one proposed here when there is no inertial 
friction ( k1=k2=0).  
 

Our algorithm was tested by comparing it against previous approaches and real mountain roads. Results 
show that our method is flexible and generates paths that takes incorporate the anisotropy of the friction while 
minimizing changes in direction. We have also shown that real problems can be modeled flexibly while using 
meaningful parameters. 
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A    Appendix 

A.1    Alpujarra mountain road 
 
The data used correspond to region N:4086790, S: 4085080, E: 462920, W: 460550 of UTM zone 30. The 
elevation model and the orthophoto were obtained from the LINEAv2 public service of the Andalusian regional 
government (http://www.juntadeandalucia.es/institutodeestadisticaycartografia/lineav2/.) 

The orthophotos have a base resolution of 0.5 m, while the digital elevation model has a resolution of 10 m. 
The digital elevation model was interpolated to generate a 0.5 m DEM to match orthophoto resolution, using the 
r.resamp.bspline command: 

 
r.resamp.bspline input="dem10" output="H" method="cubic" lambda=0.01 

The real road map in the region is also used for comparison. It has been downloaded using the IDEAndalucia 
service (http://www.ideandalucia.es/clientedescarga/). 

The anisotropic friction maps were computed using map algebra. For example, the computation for the 
south-easterly direction used the following r.mapcalc expression: 

 
r.mapcalc "Fa_SE= if(abs(H−H[1,1])/(0.707*(nsres()+ewres()))>0.2,null(),\ 
100*(H−H[1,1])*(H−H[1,1])/(0.707*(nsres()+ewres()))+(0.707*(nsres()+ewres())))" 

The GRASS command used to compute the anisotropic cost was:  
 

r.acost −k input=fd k1=3 k2=4 output=sci outdir=lci start_coordinates=461621,4085201 
The shortest path was computed using the anisotropic drain function: 
 

r.adrain −k input=sci indir=lci output=ci vector_output=ci start_direction=E \ 
start_coordinates=461781,4086552 

To compare with a non-inertial cost, a cost surface was computed setting the turning friction to zero:   
r.acost −k input=fd k1=0 k2=1 output=scni outdir=lcni start_coordinates=461621,4085201 

A.2    Conical DEM 
The DEM was created using map algebra: 

 
dem=1010−(sqrt((x()−5000)*2+(y()−5000)*2))/7 

in the region [0,10000]×[0,10000] with a resolution of 10 m. 
The GRASS command used to compute the anisotropic inertial cost was:   

r.acost −k input=fda k1=30 k2=2 output=si outdir=li start_coordinates=5000,500 
The shortest path generated for a starting point at (5000,4000), with west as the incoming direction, was 

computed using   
r.adrain −k input=si indir=li output=ci vector_output=ci start_direction=W \ start_coordinates=5000,4000 

We generated the perturbed DEM using map algebra:   
r.adrain −k input=si indir=li output=ci vector_output=ci start_direction=W \start_coordinates=5000,4000 

A.3    Passo dello Stelvio 
The elevation data was imported from https://www.eea.europa.eu/data-and-maps/data/eu-dem from which an 
elevation map with a resolution of 25x25 m can be downloaded. The map was restricted to N: 2607625, S: 
2596325, E: 4364575, W: 4347100, and interpolated to generate a 1 m resolution map using BSpline resampling: 
r.resamp.bspline input="EUdem@PERMANENT" output="H" method="bicubic" 

The road map was obtained from Open Street View. 
The anisotropic friction maps were computed as in the case of the Alpujarra mountain road test. 
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The resulting paths were exported to text files in order for analysis. This conversion was carried out using the 
following GRASS script that takes the vector map of a path as argument: 

 
v.to.points $1 output=p$1 use=vertex −t −−o 
v.db.addtable p$1 layer=2 columns="h double precision" 
v.what.rast map=p$1 rast=H col=h layer=2 
v.out.ascii −−overwrite p$1 output=p$1.txt format=point layer=2 columns=h 
 
The resulting text files were processed using a spreadsheet, computing the total length of the path, the sum of 

the absolute values of the turning angles and the sum of the absolute values of the slopes. 


