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Abstract: 
 

Air particulate matter (PM2.5) pollution is a critical environment and human health 
problem. This research utilizes dailymeasurement data of PM2.5 air pollution of 27 air 
pollution monitoring stations during five-year period (2014-2018) to analyzethe spatial 
and temporal distribution patterns in Beijing, China. Five (5) sampling time periods 
daily were extracted from original hourly monitoring data during the study period, 
namely:morning peak traffic period (MPT); morning low traffic period (MLT); 
afternoon low traffic period (ALT); afternoon peak traffic period (APT); and midnight 
period (MIDN). 
 

Mann-Kendall statistical test andPrincipal Component Analysis (PCA) were used to 
study temporal trend and variations. Geostatistical method of inverse distance 
weighted (IDW) interpolations was used to study the spatial distribution patterns. The 
results of Mann-Kendall Trend Analysis indicate PM2.5 concentrations mainly show 
declining patterns of the four seasons during the five-year period with the p-values of 
summer, fall, and winter are smaller than 0.01. Some p-values during spring are 
between 0.01 to 0.05 indicatingweak decline trend.PCA analysis shows that the 
dailyPM2.5 concentrations reachthe highest in the winter season, and the lowest 
concentrations in the summer each year.The general trend during the five-year study 
period is declining. Results of spatial analysis indicate that north and northwest region 
encountered the lowest PM2.5 air pollutions. The highest PM2.5 air pollution 
occurred in the southern suburban areas.The results show that heat energy supply 
duringwinter season to buildings and houses is the greatest impact factor to PM2.5 air 
pollutions in Beijing. 
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1. Introduction  
 

Air particulate matter (PM2.5) pollution is a critical environment and human health 
problem. The primary pollutant type of air pollution that causes lung cancer was ambient 
particulate matters equal or smaller than 2.5 micro-meters, PM2.5(Chen et al., 2014; Wu et al., 
2021). The objective of this research is to analyze the officially published daily PM2.5 data 
from 2014 to 2018 by the Bureau of Environmental Protections, City of Beijing, China and 
find the temporal and spatial distribution patterns. The daily field measurements were 
conducted at the bureau’s air pollution monitoring stations across the entire municipality. 
This research also analyzes the major sources and impacting factors of PM2.5 in the study 
area based on the spatial and temporal distribution patterns.  

 

The original dataset covers a total of 35 field measuring stations with hourly 
measurements conducted daily for a total of five years from 2014 to 2018. Analyzing this big 
dataset of PM2.5 pollution can yield results with higher precision, accuracy, and consistency 
in comparison to the previous study (Tang et al., 2009; Tang et al., 2010). The first hypothesis 
of this research is that the PM2.5 pollution in Beijing was gradually reduced and mitigated 
chronologically during the study period with the introduction of “Air Pollution Prevention 
and Control Action Plan” in 2013. The “Air Pollution Prevention and Control Action Plan”is 
the most rigorous air pollution emission reduction policy enforced by the Chinese 
government during the last a few decades (Zhao et al., 2020). Secondly, the major 
concentrations of PM2.5 pollutant might come from different sources at different time 
periods. During the building heat supply time-period in the winter season each year, the major 
source of PM2.5 pollutant is from building heat supply facilities using coal or natural gas. 
During other seasons, the major contributions to the PM2.5 pollutant in Beijing is mainly 
from vehicle traffic emissions. 

 

2. The Study Area and Data Acquisition 
 

Beijing is located at the northern part of the North China Plain with 39.9042°N latitude 
and 116.4074°E longitude. The municipality is surrounded by the Yan Mountain from north, 
northwest, and west. The climate in Beijing can be characterized by relatively high 
precipitation and high temperature in the summer times; relatively dry and low temperature in 
the winter periods (Beck et al., 2020).Owing to the fast industrialization and urban expansion, 
Beijing has observed a sharp increase in the frequency of severe air pollution events since late 
1980s. Since the year of 2012, Beijing municipal government committed the funding for its 
Bureau of Environmental Protections to select the sites and construct permanent stations of 
air pollution monitoring.  

 

The Municipal Environmental Air Pollution Monitoring Center of the Beijing Bureau of 
Environmental Protections manages a total of 35 air pollution monitoring stations, which are 
in different districts or counties in both urban and suburb regions across the municipality. 
One of the examples of the air pollution monitoring sitesthat include the particle matter 
sampling is the Longevity West Palace sampling station in Beijing, which the PM2.5 data 
wereused in this study (Figure 1). 
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Figure 1: The Air Pollution (including PM2.5) Sampling Site and Equipment Setup in the Longevity West 
Palace 
 

Hourly values of PM2.5 air pollution were monitored and published by the Beijing Municipal 
Environmental Monitoring Center (http://www.bjmemc.com.cn/). The five-year period 
datasets of this research were downloaded by our research team at the Capital Normal 
University, Beijing, China. After the PM2.5 source data was collected, we conducted manual 
examinations and evaluation of data quality. Eight (8) monitoring stations were removed 
owing to large quantity of “null” values in the database. We think that the instability of the 
data collecting computer caused this situation.Therefore, this research only used the datasets 
of remaining 27 air pollution monitoring stations located in both urban area and suburb area 
(Figure 2) across Beijing Municipality.  
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Figure 2: Map of Total PM2.5 Observation Sites and the Sites Used in This Research in Beijing 
Municipality 
 

3. Methods and Approaches 
 

Fan et al. (2015) studied emission characteristics of vehicle exhaust based on actual traffic 
flow information in Beijing. The research analyzed the spatial and temporal distribution 
patterns of vehicle volume and pollutant emission quantities.  
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The research indicated there was a positive correlation between pollutant emission 
intensities and traffic volume. The emission intensity was generally higher during the daytime 
and high traffic hours than the evening hours. Based on the results of this research, we 
hypothesized the possible high and low pollution time periods during a 24-hour day. A total 
of five (5) sampling time periods within this large dataset were created for each of the 
monitoring days during the five-year period. These are: morning peak traffic time period 
(MPT, an average PM2.5 concentration data from 06:00am and 08:00am); morning low traffic 
time period (MLT, an average PM2.5 concentration data from 9:00am and 11:00am); afternoon 
low traffic time period (ALT, an average PM2.5 concentration data from 01:00pm and 
03:00pm); afternoon peak traffic time period (APT, an average PM2.5 concentration data from 
04:00pm and 06:00pm); and midnight time period (MIDN, an average PM2.5 concentration 
data from 01:00am and 03:00am). MPT and APT are the commuting peak time in Beijing 
which have the maximum traffic flow on the streets and major highways. MLT and ALT are 
the sampling times during the working time periods of a day. Our objective is to find the 
contribution of human activities on the PM2.5 pollutions in Beijing. To discover the potential 
contributions of PM2.5 concentrations from heating supply to buildings and houses in Beijing, 
we also selected a mid-night sample period.  

 

Data of sampling time periods were extracted using MATLAB software and stored in 
Excel. Python programming was applied to integrate those Excel charts into yearly 
differentiatedand air pollution monitoring site differentiated Excel sheets. A total of 
135datasets were extracted for the 27 environmental air pollution observation sitesduring the 
entire five-year period. At each of 27 locations, we have five time periods that are namely: 
MIDN, MPT, MLT, ALT, and APT. 

 

In order to capture the seasonal distribution and changes of the PM2.5 air pollutions, 
one of the major approaches in this study is to divide the seasons in each year and calculate 
the mean values. Using a typical meteorological breakdown of seasons, we decided to use 
March, April, May in each year as months of spring season; June, July, August in each year as 
months of summer season; September, October, November in each year as months of 
autumn season; and December, January, February in each year as months of winter season. 
Then we calculated the seasonal average of PM2.5 concentrations in each of the observation 
sites in each year and saved them into new datasets (Seasonal Average Selected Datasets). 
Seasonal Average Datasets of the selected five time periods during a data for each sampling 
year including all the observation stations were calculated. 

 

3.1. Analyses of Temporal Distributions and Change of Air Pollutions in Beijing  
 

In big data analysis, regression analysis is a predictive modeling technique that studies 
the relationship between a dependent variable (target) and the independent variables 
(predictors). This technique is often used for predictive analysis as well. In statistics, 
regression analysis refers to a statistical analysis method that determines the quantitative 
relationship between two or more variables that are depended on each other. We conducted 
basic analysis of simple seasonal or temporal pattern with the linear regression model of daily 
average PM2.5 concentration data in R studio. Linear regression uses the best fitting line 
(regression line) to establish a relationship between the dependent variable (Y) and one or 
more independent variables (X).  
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In our study, daily variation or temporal change patterns were specified as the 

dependent variable and PM2.5 concentrations as independent variable. The objective of this 
analysis is to present the general trend of slopes on decrease or increase of seasonal PM2.5 
concentrations with regression trend lines of linear regression model in the 5-year period. 
Simple regression trend lines can show the temporal patternsof general trends of seasonal 
variation on PM2.5 pollutions in Beijing. 

 

To show the significance of temporal trend in these sites, we conducted Mann-
Kendall statistical test in the R studio. This method can effectively distinguish whether a 
natural process is in natural fluctuation or has a monotonic trend(Cao et al., 2008). Mann-
Kendall nonparametric rank test is useful in trend detection of data. Its advantages are as 
follows, first, the series is allowed to have missing values. Secondly, it is no need to conduct 
specific distribution test for data series, and trend test can also be performed for extreme 
values. Thirdly, the analysis is mainly about the relative order of magnitude rather than the 
number itself, which enables the analysis of trace values or values below the detection range 
(Karmeshu, 2012).  

 

Principal Component Analysis (PCA) is a multivariate statistical method to examine 
the correlation among multiple variables. PCA studies how to reveal the internal structure 
among multiple variables through a few principal components, deriving a few principal 
components from the original variables so that they retain as much information as possible 
about the original variables. The objective of using PCA in this research is to look for the 
major impact of pollution pattern among the five different sampling times during a day in 
five-year period in temporal scale for the entire five years. 

 

We analyzed aggregative temporal patterns of the dataset with the principal 
component analysis (PCA) in MATLAB platform. The first step in PCA procedure is Data 
Arrangement. We converted the data from Excel worksheets into a MATLAB data file, which 
organized by location and year. In order to standardize the data, we subtracted the mean and 
divided by the standard deviation for values of each variable. The purpose of this step is to 
standardize the range of continuous initial variables so that each of them contributes equally 
to the analysis. The next step is the Covariance Matrix Computation. The purpose of this step 
is to understand how the variables in the input data set vary relative to each other's means, in 
order to determine the relationships between variables. Then, we computed the eigenvectors 
and eigenvalues of the covariance matrix to identify the principal components. The principal 
component with the highest variance is termed the “first principal component.” To avoid 
protentional negative values in the process, which are meaninglessness in PM2.5 concentration 
values, we only used the result of “first principal component”. In the end, we recast the data 
along the axes of principal components. The purpose is to redirect the data from the original 
axes to the axes represented by the principal components using the eigenvectors formed by 
the eigenvectors of the covariance matrix. 

 

The central idea of principal component analysis is to reduce the dimensionality of a 
data set composed of many related variables while preserving the variations existed in the data 
set as much as possible(Shlens, 2014). This objective is achieved by converting input variables 
to a new set of variables, known as principal components (PCS), which are unrelated and 
ordered so that the first few retains represent the most changes that occurred in all the 
original variables. The principal component represents the direction of the data that explains 
the largest amount of variance or changes over time.  
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That means the line that captures most of the information in the dataset. In this 
study, our objective is to find the principal component that represents the temporal variations 
of the entire time period during this 5-year on the hourly basis, which is a survey in this large 
database.   

 

3.2. Analyses of Spatial Distributions of Air Pollutions in Beijing  
 

Spatial interpolation is the process of estimating the values of the variables at 
unsampled locations with data of known observation points in the study region. Statistical 
interpolation methods were applied previously to air pollutant modeling to estimate the 
spatial distribution of air pollutions based on data provided by air quality monitoring sites 
(Lozano et al, 2009; Deligiorgiand Philippopoulos, 2011). There are two major categories of 
spatial interpolation techniquesin the Geographic Information Systems (GIS): deterministic 
and geostatistical. Proximity method, global polynomial (GPI), local polynomial (LPI), inverse 
distance weighted (IDW), and radial basis functions (RBF) interpolations are in general the 
deterministic methods. By contrast, geostatistical interpolation techniques includesurface 
trend and Kriging methods. Deterministic interpolation methods create prediction value 
surfaces with measured points based on degree of similarity and generatingsmoothness of 
value changes.Geostatistical methods quantify the spatial autocorrelation between 
measurement points and account the spatial configuration of sampling points around the 
predicted locations(Gimond, 2021).  

 

The Inverse Distance Weighted (IDW) technique uses values from nearby weighted 
positions to calculate the average of unsampled positions. IDW interpolation explicitly 
assumes that things are close to one another are more alike than those that are further apart. 
It is expected that we will have more accurate result from IDW interpolation for those 
physically generated features or events. According to the research of Gimond (2021), the 
weight is proportional to the proximity of the sampling point to the unsampled position and 
can be specified by the IDW power coefficient. The bigger the power coefficient, the stronger 
the weight of nearby points as can be gleaned from the following equation that estimates the 
value z at an unsampled location j: 

 

 
The carat ^ above the variable z points out that the value at j is being estimated. The 

parameter n is the weight parameter that is applied as an exponent to the distance thus 
amplifying the irrelevance of a point at location i as distance to j increases.  

 

IDW algorithm is actually a moving average interpolator that is typically applied to 
highly variable data. To predict a value for any unmeasured location, IDW uses the measured 
values surrounding the prediction location. In this study, we used the temporally sampled data 
that was calculated from observation stations to predict spatial distributions of PM2.5 air 
pollutions. In addition, IDW assumes that the local effect of each of the measurement points 
decreases with increasing distance, which better reflects the geographic distribution pattern of 
the PM2.5 in the city. In our study, we will make PM2.5 concentration spatial interpolation 
maps for both annual average and seasonal average by five different sampling time periods for 
each of the 27 air pollution monitoring stations applying ArcGIS. 
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Standardization of digital maps of spatial interpolations on air particulate pollution 

was conducted for the purpose to compare analytical results. In this study, the legend in our 
annual average spatial interpolation atlas (Annual Average Atlas) of PM2.5 concentrations and 
seasonal average spatial interpolation atlas (Seasonal Average Atlas) for different daily sample 
time periods of PM2.5 concentrationswere standardized particularlyaccording to the real-
world measured range of the entire survey time period.  

 

For the annual average spatial interpolation atlas of PM2.5 concentrations, we selected 
5 ug/m3as the legend group unit. All the maps in the annual average spatial interpolation atlas 
of PM2.5 concentrations began at 50 ~ 55 ug/m3 group and end at 95 ~ 100 ug/m3 group. 
There are a 10 concentration groups in total. For the spatial interpolations atlas of seasonal 
average of PM2.5 concentrations at different daily sample time periods, we found 27 ug/m3 is 
the lowest PM2.5 concentration, which is from APT time in the summer of 2018. The highest 
PM2.5 concentration is 200 ug/m3 and is from MIDN time in the winter of 2015. To 
guarantee the distinguishability of each map, we defined 18 concentration groups in total. For 
the Seasonal Average Atlas, we selected 10 ug/m3 as the legend group unit. All the maps of 
seasonal spatial interpolation atlas of PM2.5 concentrations in the different daily sample time 
periods began at 20 ~ 30 ug/m3 group and end at 190 ~ 200 ug/m3 group.  

 

4. Results and Discussions  
 

4.1 Results of Temporal Analysis of PM2.5 Air Pollution 
 

Mann-Kendall Trend Analysis was conducted in the R studio. p-values were used as 
the major criterium to determine if a decrease or increase trend exist during the study period 
in different seasons. The null hypothesis is that there is no obvious up or down trend within 
the five-year period for different seasons. The statistical conditions were tested as the 
following. If p-value < 0.01, the description of the result is a stronger determination in 
rejecting the null hypothesis. If p-value is between 0.01 and 0.05, the description of the result 
is a weaker determination in rejecting the null hypothesis. If p-value > 0.05, it indicates that 
the results are more inclined to accept the null hypothesis. 

 

Table 1 summarizes the result of slope and p-value of spring season trend lines at 
different monitoring stations during the five-year period. Examples of the trend line plots are 
shown in Figure 3. Table 1 is sorted by the slope rate from lowest to highest. We can find p-
values of several sites are between 0.01 and 0.05 (green section) or higher than 0.05 (orange 
section)in Table 1. 11 of 27 PM2.5 observation sites indicate that there are significant 
descending trends of PM2.5 contaminant concentrations in the spring season during the five-
year period. Another 11 of 27 PM2.5 observation sites show there are weak descending trends 
of PM2.5 contaminant concentrations in the spring season during the entire five-year period. 5 
out of 27 PM2.5 observation sites show that no obvious up or down trends of PM2.5 
contaminant concentration exist in the spring season during the five-year period.We can 
clearly identify the differences of the slope of trend linesin Figure 3. Although the variance of 
p-value results exists, majority of PM2.5 observations (22 of 27) show descending trend 
(significant or weak trend) during the spring season of five years. Comparing different 
locations of the PM2.5 observation sites in the spring (Table 1), all the five (5)sampling sites 
with no obvious variation trends are located in the suburban areas in Beijing. 
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Station-Name Spring Slope P-value 

Fangshan -0.0842 <0.01 

South Third Ring Road -0.07639 <0.01 

Yungang -0.07217 <0.01 

Yizhuang -0.07102 <0.01 

Daxing -0.0642 <0.01 

Fengtai Garden -0.06266 <0.01 

Inside Yongding Gate -0.06159 <0.01 

Agricultural Pavilion -0.05878 <0.01 

Tongzhou -0.05798 <0.01 

Wanliu -0.05735 <0.01 

Olympic Sports Center -0.05692 <0.01 

Front Gate -0.05393 0.01019 

Temple of Heaven -0.05079 0.01083 

Shunyi -0.04966 0.02043 

Yongle Village -0.04934 0.01412 

Huairou -0.04844 0.01377 

Longevity West Palace -0.04674 0.02326 

Pinggu -0.04505 0.02396 

Guanyuan -0.0436 0.03119 

Dongsi -0.04342 0.04226 

Changping -0.04183 0.03521 

Xizhi Gate North -0.04166 0.04641 

Ancient Town -0.04018 >0.05 

Dingling -0.03518 >0.05 

Mentougou -0.03273 >0.05 

Miyun -0.01769 >0.05 

Badaling 0.000885 >0.05 
 

Table 1: Results of Slope rate and P-value from Five-year Spring Sampling Trend Line 
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a) 

 
b) 

 
c) 
Figure 3: Examples of Different Trend Conclusions in Spring  
a) Daxing (p < 0.01), b) Longevity West Palace (0.01 < p <0.05), c) Mentougou (p > 0.05) 
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Table 2 presents the result of slopes and p-values of trend lines for the summer 
during the five-year period, sorted by slope rate from lowest to highest. All the p-values of 
PM2.5sampling sites are less than 0.01. Comparing with negative slope rates, all the PM2.5 
observation stations show there are significant decreasing trends of PM2.5 contaminant 
concentration during the summer of five-year period. 
 

Station-Name Summer Slope P-value 

South Third Ring Road -0.11223 <0.01 

Yizhuang -0.1022 <0.01 

Daxing -0.1004 <0.01 

Guanyuan -0.08778 <0.01 

Tongzhou -0.08653 <0.01 

Olympic Sports Center -0.08599 <0.01 

Temple of Heaven -0.08449 <0.01 

Dongsi -0.08321 <0.01 

Front Gate -0.08149 <0.01 

Yungang -0.08036 <0.01 

Shunyi -0.07902 <0.01 

Pinggu -0.07718 <0.01 

Fangshan -0.07604 <0.01 

Wanliu -0.07571 <0.01 

Huairou -0.07538 <0.01 

Inside Yongding Gate -0.07533 <0.01 

Fengtai Garden -0.07304 <0.01 

Yongle Village -0.07204 <0.01 

Longevity West Palace -0.06851 <0.01 

Ancient Town -0.06802 <0.01 

Agricultural Pavilion -0.06619 <0.01 

Changping -0.06546 <0.01 

Dingling -0.05571 <0.01 

Mentougou -0.04885 <0.01 

Xizhi Gate North -0.04631 <0.01 

Badaling -0.04514 <0.01 

Miyun -0.04451 <0.01 
Table 2: Results of Slope rate and P-value from Five-year Summer Sampling Trend Line 
 

Table 3 shows the result of slopes and p-values of autumn season during the five-
year period, sorted by slope rate from lowest to highest. All the p-values of PM2.5 observation 
sites are less than 0.01. Comping with negative slope rates, all the PM2.5 observation sites 
show the trends of significant decrease of PM2.5 contaminant concentration during the 
autumn of five-year period. 
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Station-Name Autumn Slope P-value 

Yizhuang -0.1553 <0.01 

Daxing -0.14174 <0.01 

Front Gate -0.12925 <0.01 

South Third Ring Road -0.12858 <0.01 

Inside Yongding Gate -0.12808 <0.01 

Agricultural Pavilion -0.12265 <0.01 

Xizhi Gate North -0.12028 <0.01 

Fangshan -0.11945 <0.01 

Fengtai Garden -0.11504 <0.01 

Tongzhou -0.11134 <0.01 

Wanliu -0.10973 <0.01 

Yungang -0.1071 <0.01 

Yongle Village -0.10435 <0.01 

Olympic Sports Center -0.1021 <0.01 

Longevity West Palace -0.09932 <0.01 

Temple of Heaven -0.09929 <0.01 

Guanyuan -0.09921 <0.01 

Ancient Town -0.09762 <0.01 

Dingling -0.09262 <0.01 

Changping -0.0917 <0.01 

Dongsi -0.08727 <0.01 

Shunyi -0.0828 <0.01 

Huairou -0.0809 <0.01 

Mentougou -0.07568 <0.01 

Pinggu -0.07493 <0.01 

Miyun -0.07254 <0.01 

Badaling -0.06505 <0.01 
Table 3: Results of Slope rate and P-value from Five-year Autumn Sampling Trend Line 
 

Table 4 indicates the result of slopes and p-values for winter during the five-year period, 
sorted by slope rate from lowest to highest. All the p-values of PM2.5 observation sites are less 
than 0.01. Comparing the negative slope rates, all the PM2.5 observation sites show there are 
significant decreasing trends of PM2.5 contaminant concentrations in winter of the five-year 
period. 

Station-Name Winter Slope P-value 

Daxing -0.24024 <0.01 

Fangshan -0.22595 <0.01 

Tongzhou -0.22527 <0.01 

Yizhuang -0.221 <0.01 

Yongle Village -0.20937 <0.01 

Fengtai Garden -0.19942 <0.01 
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South Third Ring Road -0.19311 <0.01 

Yungang -0.18349 <0.01 

Olympic Sports Center -0.1822 <0.01 

Front Gate -0.17994 <0.01 

Longevity West Palace -0.17907 <0.01 

Wanliu -0.17718 <0.01 

Agricultural Pavilion -0.17653 <0.01 

Inside Yongding Gate -0.16561 <0.01 

Pinggu -0.165 <0.01 

Dongsi -0.15862 <0.01 

Changping -0.15601 <0.01 

Ancient Town -0.1541 <0.01 

Guanyuan -0.15385 <0.01 

Temple of Heaven -0.15187 <0.01 

Huairou -0.15095 <0.01 

Dingling -0.15053 <0.01 

Xizhi Gate North -0.14904 <0.01 

Shunyi -0.1459 <0.01 

Miyun -0.13578 <0.01 

Mentougou -0.13316 <0.01 

Badaling -0.09116 <0.01 
Table 4: Results of Slope rate and P-value from Five-year Winter Sampling Trend Line 
 

According to the p-values of four tables during four seasons, PM2.5 concentrations 
mainly show declining patterns during the five-year period. Figure 4 is the computational 
results of Mann-Kendall Trend lines of different seasons during the five-year period at the 
Daxing samplingstationas an example. The slope rates at Daxing sampling site are -0.0642, -
0.1004, -0.14174, -0.24024 in spring, summer, fall, and winter. 
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a) 

 
b) 

 
c) 

 
d) 
Figure 4: Example: Five-year Different Seasons of PM2.5 Contaminant Result 
a) Spring, b) Summer, c) Autumn, d) Winter in Daxing Station 
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Principal component analysis (PCA) was conducted in the MATLAB environment. 
All the plots with five eigenvalues and corresponding weight percentage were produced. To 
avoid protentional negative values in the computation process, which might be meaningless in 
PM2.5 concentration value representations, we only used the result of “first principal 
component”. There are a total of five eigenvalues in the computations. The result of this 
process shows that the lowest weight percentage of the fifth eigenvalues is 77.62% and the 
highest weight percentage of the fifth eigenvalues is 82.50% among the 27 field sampling 
stations. All of the weight percentage of the fifth eigenvalues are around 80%. These 
analytical results suggest that the fifth eigenvalues of all the sampling stations are the “first 
principal component” in our research period.  

 

All of the PCA distribution plots ofthe 27 sampling stations for the “first principal 
component” were produced. Figure 5 shows examples of the PCA computations. It is 
important to point out that the unit on these diagrams are the unit of the PM2.5pollution 
concentration Datasets (ug/m3). Examples of PCA of PM2.5pollution sampling sites in Figure 
5, representing urban and suburban areasin Beijingpresented the similar trend patterns with 
Figure 3 and Figure 4. Sites of Inside Yongding Gate and Xizhi Gate North are examples in 
the urban area in Beijing. Badaling site is an example in the north suburb in Beijing and 
Yongle Village site is located in the southern suburb in Beijing. 

 
a) 
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b) 

 
c) 
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d) 
Figure 5: PCA Results of Selected PM2.5 Contaminant Observation Sites  
a) Inside Yongding Gate, b) Xizhi Gate North, c) Badaling, d) Yongle Village 
 

According to principles of the PCA analysis, PCA is designed for identifying the 
most significant aspects or characteristics of the dataset. In order to identify the significant 
temporal distribution patterns of large dataset, the PCA analysis replaces the original data with 
the most significant aspects of the data during the study time period. Therefore, PCA analysis 
is a suitable method to combine temporal variations in the five resampled time periods of 
PM2.5concentrations using one single change curve of time series. The results of PCA time 
series pattern reflect the daily variations of PM2.5concentrationsfor the entire 5-year period 
(Figure 5).  

 

According to the resultsof PCA analysis, the general trends of PM2.5 concentrations 
in Beijing at all 27 field sampling stations during the five-year study period show 
downwardstrend with daily and seasonal fluctuations. The PM2.5 air pollution concentration 
values are relatively higher in the winter season each year. The PM2.5 concentration time series 
pattern shows the values in winter reached the highest volumes each year while the year-to-
year trend is decreasing. The PM2.5 concentration time series pattern of PCA analysis also 
indicates the daily values reach the lowest in the middle of each year, normally during the late 
spring and summer. In summary, the results of this research suggest that the PM2.5 
concentrations are relatively low in summer and relatively high in winter in Beijing during the 
study period.  
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Each of the time series result plotsin this research showsthe PM2.5 concentrations and 

pollution magnitudes day by day during the five-year study period. This is essential and 
significant for pinpointing when and where the most severe pollution situation occurred 
during the five-year period. Relating this daily pollution concentration time series to the 
respiratory disease treatment records that was collected by field hospital in the region, we will 
be able to analyze the potential causes. In the urban area in Beijing (Figure 5 a. and b.), the 
highest dailyPM2.5 concentration is around 1300 ug/m3. In the northern suburb of Beijing 
(Figure 5 c.) the highest daily PM2.5 concentration is around 800 ug/m3. In the southern 
suburb of Beijing (Figure 9 d)) the highest daily PM2. concentration is around 1300 ug/m3. 
The PM2.5 concentrations in the south suburban region is at the same level of magnitude to 
that of urban areas in Beijing. This result suggests that downtownBeijing is not the only high 
riskregion of PM2.5 pollution. Secondly, this result also suggests that major sources of PM2.5 
air pollution might have been originated at southern part of the urban areas and southern 
suburban regions. 
 

4.2 Results of Spatial Distribution Analysis of PM2.5 Air Pollution 
 

Spatial distribution patterns of the average annual PM2.5 concentrations during the 
study period from 2014 to 2018 are shown in Figure 6. The legend of the entire five maps was 
standardized and the color presentations of the PM2.5 air pollutions can be compared to each 
other. Pollution distribution patterns were interpolated using IDW (Inverse Distance 
Weighted) method in GIS. During this five-year study period, the highest annual average 
PM2.5 concentration value ranges from95 to 100 ug/m3, and the lowest annual average PM2.5 
concentration value ranges from 50 to 55 ug/m3. The results show that the area encountering 
the highestannual PM2.5 air pollutions is the south and southeast part of Beijing municipality. 
The area with the lowest PM2.5 air pollutions is in the north and northwest region in Beijing. 
The results indicate that the highest PM2.5 air pollution concentrations occurred in the 
southern suburban areas other than the downtown or core urban area in Beijing. This 
suggests that the southern suburban and urbanareas in Beijing arethe most polluted areas by 
PM2.5. During the five-year study period, the annual PM2.5 concentrations in Beijing 
aregradually reduced and air quality was improved.  
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e) 
Figure 6: Results of Average Annual Spatial Distribution Patterns (ug/m3) 
a) 2014, b) 2015, c) 2018, d) 2017, e) 2018 
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Examples of average seasonal distribution patterns of the five daily sampling time 

periods are shown in Figure 7.Map legends of seasonal distribution patterns based on daily 
sampling time were also standardized for better visualization and comparisons. In this 
distribution series of PM2.5 air pollution, the highest average PM2.5 concentration value 
rangesfrom 190 to 200 ug/m3, and the lowest average PM2.5 concentration value rangesfrom 
20 to 30 ug/m3. Comparing the seasonal changes of thefive different daily monitoring time 
periods, we found that spatial distribution patterns of the PM2.5 concentrations also change in 
different seasons. Distribution patterns of daily sampling time periods during the spring, fall 
and winter seasons show that the area of least PM2.5 pollutions is still in the north and 
northwest part in Beijing, while the area ofhighest PM2.5 pollutions is still in the south and 
southeast region of Beijing (Figure 7 a)). However, the daily sampled PM2.5 air pollution 
patterns in the summertime are more evenly distributed across the Beijing municipality. In the 
summer season, the area most affected by PM2.5 air pollution is the core urban area or in 
downtown Beijing, as well as the south and southeast region of Beijing (Figure 7 b). 

 
a) 
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b) 
Figure 7: PM2.5 Contaminant Spatial Distribution Variation (ug/m3) 
a) 2014 MIDN Winter Average PM2.5 Concentrate Map, b) 2018 MPT Summer Average 
PM2.5Concentration Map 
 

Sample results of spatial interpolations of five daily surveying time periods by seasons 
are shown in Figure 8. This research found that heavy PM2.5 air pollution often occurred 
during the wintertime when heat energy suppliesfor commercial, office, and residential 
buildings were conducted. During winter seasons, midnight periods (MIDN) of the entire five 
years presented the highest PM2.5 air pollution concentrations. This evidence strongly suggests 
that heating supply to buildings and houses is a major PM2.5 air pollution source in our study 
area. Since the lowest temperature always occurs during midnight (MIDN) period, coal or 
natural gas combustion for heating supply reaches the highest. The heating supply facilities 
for buildings and houses need to consume more coals or fuels and increase the combustion to 

maintain the indoor temperature higher than 16℃according to government guideline (The 
Government of Beijing Municipality, 2020). This process in turn produced more PM2.5 air 
pollutions. 
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d) 
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e) 

 
f) 
Figure 8: Severe PM2.5 Contaminant Situation in Wintertime (ug/m3) 
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a) 2014 Spring ALT Average PM2.5 Concentrate Map, b) 2014 ALT Winter Average PM2.5 Concentrate 
Map, c) 2014 MIDN Winter Average PM2.5 Concentrate Map, d) 2017 Spring ALT Average PM2.5 
Concentrate Map, e) 2017 ALT Winter Average PM2.5 Concentrate Map, f) 2017 MIDN Winter 
Average PM2.5 Concentrate Map 
 

This research also found that the PM2.5 air pollutions were decreasing during the 
study period across five daily sampling times and during the different seasons year by year. 
According to Figure 9, even during the sampling time of most heavy PM2.5 air pollutions, the 
midnight (MIDN) in winter season each year, the PM2.5 pollution concentrations show the 
trendof decline. Assuming the level of heat energy supply to buildings and houses in winter 
kept the same, the decreasing of PM2.5 air pollution concentrations should mainly be credited 
to the government policy of converting coal combustion to natural gas combustion, to 
electricity heating, as well as clean coal technology replacement (Xie et al., 2019). 

 
a) 
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d) 
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e) 
Figure 9: The Decreasing Trend of PM2.5 Pollutant within MIDN Winter Sample Time (ug/m3) 
a) 2014 MIDN Winter Average PM2.5 Concentrate Map, b) 2015 MIDN Winter Average PM2.5 
Concentrate Map, c) 2016 MIDN Winter Average PM2.5 Concentrate Map, d) 2017 MIDN Winter 
Average PM2.5 Concentrate Map, e) 2018 MIDN Winter Average PM2.5 Concentrate Map 
 

Figure 10 indicates that the gradients of PM2.5 concentration declining in the study 
area also decrease during the five-year period. Comparing the APT sampling time period in 
winter with that in the summer in 2018, the gradient is much lower than that during 2014. 
The decreasing of PM2.5 air pollution gradients during the study years and in the study area 
show the strong reduction of PM2.5 pollution and represents the result of government policy 
in improving the air quality in Beijing. 

 
a) 
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c) 
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d) 
Figure 10: The Descending of PM2.5 Contaminant Concentration Gradients (ug/m3) 
a) 2014 MIDN Winter Average PM2.5 Concentrate Map, b) 2014 APT Winter Average PM2.5 
Concentrate Map, c) 2017 APT Winter Average PM2.5 Concentrate Map, d) 2018 APT Winter Average 
PM2.5 Concentrate Map 
 

In summary, this research discovered the following.First, winter is the most severe 
period of PM2.5 air pollution in each meteorological year. PCA results indicatethat the PM2.5 
air pollution peaks in each of PCA graph plots during the winter season each year. The results 
of Seasonal Average Distribution Patterns show that most of the high PM2.5 air pollution 
concentrations occur during the winter season, especially during the midnight (MIDN) 
sample time periods (Figure 9 and 10). 

 

Secondly, the PM2.5 air pollution concentrations in Beijing were gradually decreasing 
from 2014 to 2018. The evidence to support this conclusion are from PCA results (Figure 5) 
and Results of Average Annual Spatial Distribution Patterns (Figure 6). The results of PCA 
show the fluctuation decline of the air pollution from 2014 to 2018 (Figure 5). Standardized 
Result Atlas of Average Annual Spatial Distribution Patterns (Figure 6) show the 
improvement of the air quality during the study period. 

 

Thirdly, in terms of a five-year time perspective, Mann-Kendall Trend Analysis 
shows the reductions of PM2.5 air pollutions in summer, autumn, and winter seasons (Table 2, 
Table 3,and Table4). Although there are a few observation sites (5 of 27) support there are no 
obvious up or down trends among spring samplings of PM2.5 air pollution concentrations 
during the five-year period  
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(Table 1), most of observation sites (22 of 27) support that there is descending trend 
(significant or weak trend) in the spring seasons during the five-year period. The most 
rigorous emission reduction policy in Chinese history, “Air Pollution Prevention and Control 
Action Plan” that was enacted by the Chinese government in 2013 and the actions to comply 
with this policy may cause the overall improvement of air quality and declining trend of PM2.5 
air pollution in Beijing (Zhao et al., 2018). 
 

Fourthly, the PM2.5 air pollution concentrations in summer are significantly lower 
than that in other seasons. According to the results of PCA analysis (Figure 5), the values of 
PM2.5 air pollution concentration are the lowest during the summer comparing to other 
seasons. Meanwhile, based on the Result Atlas of Average Seasonal Distribution Patterns 
(Figure 6), even in the most polluted years, the highest PM2.5 pollution concentration range is 
lower than 80 ~ 90 ug/m3 level (Figure 11) in summers. 

 
a) 
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b) 

 
c) 
Figure 11: Better PM2.5 Contaminant Situation in Summertime (ug/m3) 
a) 2014 MLT Summer Average PM2.5 Concentrate Map, b) 2015 MPT Summer Average PM2.5 
Concentrate Map, c) 2018 APT Summer Average PM2.5 Concentrate Map 
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Fifthly, spatial distribution patterns show the area of lowest PM2.5 pollutions in 
Beijing is north and northwest region (Figure 6, 7). The highest concentrations of PM2.5 air 
pollution in the northwest part in Beijing occurred during midnight (MIDN) in 2014 winter 
(Figure 12). The PM2.5 air pollution concentration record at Badaling Observation Site 
reached to the 80 ~ 90 ug/m3 level. Also, the most polluted area is in the south and southeast 
part of Beijing. The core urban area in Beijing is not the most polluted regions according to 
both Annual Average Concentrate Atlas (Figure 6) and Result Atlas of Seasonal Average 
Distribution Patterns (Figure 7, 8, 9, 10, and 11). 

 
Figure 12: 2014 MIDN Winter Average PM2.5 Concentrate Map (ug/m3) 
 

Sixthly, the results of this research suggest that vehicle traffic volume may not be the 
major influential factor of PM2.5 air pollution in Beijing. The Result Atlas of Seasonal Average 
Distribution Patterns (Figure 13) does not show significant high level of PM2.5 air pollution 
concentrations during the peak traffic time periods, nor does it show high values in the dense 
road network area in the study region. However, the interpolation patterns might be impacted 
by the locations and density of air pollution monitoring stations. Further studies are needed. 
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c) 

 
d) 
Figure 13: Selected Part of the MPT and APT Sample Time Periods’ Map (ug/m3) 
a) 2014 MPT Spring Average PM2.5 Concentrate Map, b) 2014 APT Spring Average PM2.5 Concentrate 
Map, c) 2017 MPT Winter Average PM2.5 Concentrate Map, d) 2017 APT Winter Average PM2.5 
Concentrate Map 
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Seventhly, winter season heat energy supply to buildings and houses generated great 

impacts to the PM2.5 air pollution concentrations in Beijing. According to the Result Atlas of 
Average Distribution Patterns (Figure 7 and 8), the PM2.5 concentrations in winter are the 
highest in each meteorological year. The selection of time period of winter season in this 
research coincides with that of building and house heating supply in Beijing (The 
Government of Beijing Municipality, 2020). The analytical results of this research indicate 
building and house heating in winter contributed a great amount of PM2.5 air pollution during 
the season. It makes the winter season as the highest air pollution season. While, 
implementing the rigorous emission reduction policy “Air Pollution Prevention and Control 
Action Plan” enacted in 2013 (Zhao et al., 2020), the PM2.5 pollution was gradually reduced in 
the winter. Figure 9 clearly indicates the improvement of air quality and reduction of PM2.5 
pollution in winter seasons, in particular for midnight (MIDN) time periods. Owing to the 
policy actions of converting coal combustion to electricity or natural gas, or clean coal 
technology replacement (Xie et al., 2019), the proportion of fossil fuel consumptions in 
heating supply activities gradually declined year by year. According to the Winter Heating 
Clean Energy Planin Northern China (2017-2021) (Chinese Central Government Policy 
Group on Finance and Economics, 2016), the percentage of clean energy heating supply in 
the northern region in China should reach 50% by the end of 2019, and 74 million tons of 
CO2 should be reduced from the coal consumptions and from discontinuations of inefficient 
small furnaces. As the result of multiple government policies and macro-management, the 
pollution from winter heat supply decreased during this research time (2014 ~ 2018). 
 

5. Conclusion  
 

This research analyzed temporal and spatial patterns using a five-year hourly 
monitored large PM2.5 air pollution dataset. The focus of this research is the data processing 
and analysis for the big PM2.5 air pollution dataset itself. In the future, we can combine the 
population distribution data to analyze the impacts to the PM2.5 pollutions by population 
density. We can also combine the temperature variations and weather condition data to gain 
better understanding to the winter heating supply factor on PM2.5 air pollutions. According to 
research of Li (2016), the distribution of PM2.5 in Beijing area is obviously affected by the 
surrounding regions. The process of PM2.5 pollutant dispersion was greatly influenced by the 
landscape and weather conditions in Beijing. Therefore, exploring the dispersion process of 
PM2.5 pollutants with the terrain around Beijing using a big dataset will also be significant in 
the future studies. In addition, we can also improve the accuracy of our spatial pattern 
analysis. For example, the standardized legend of Average Distribution Patterns could have 
higher contrast ratio and more precise PM2.5 pollution concentration categories. 
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