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Abstract  
 
 

Using time series of Normalized Difference Vegetation Index (NDVI) and rainfall 
data, we investigated historical vegetation productivity trends from 1982 to 2011 
over the Bani River Basin in Mali. Statistical agreements between long-term trends 
in vegetation productivty, corresponding rainfall and rate of land cover change from 
Landsat time-series imagery was used to discern climate versus human-induced 
vegetation cover change. Spearman correlation was used to investigate the 
relationship between metrics of vegetation, rainfall trends and land cover change 
categories. The results show there is a positive correlation between increases in 
rainfall and some land cover classes, while some classes such as settlements were 
negatively correlated with vegetation productivity trends. Croplands and Natural 
Vegetation were positively correlated (r=0.89) with rainfall while settlements have a 
negative correlation with NDVI time series trend (r=-057). Despite the fact that 
rainfall is the major determinant of vegetation cover dynamics in the study area, it 
appears that other human-induced factors such as urbanization have negatively 
influenced the change in vegetation cover in the study area. The results show that a 
combined analysis of NDVI, rainfall and spatially explicit land cover change 
provides a comprehensive insight into the drivers of vegetation cover change in 
semi-arid Africa.       
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Introduction 
 

Vegetation vitality or chlorophyll activity indices from low to moderate 
resolution remote sensing are widely used to study large scale changes and patterns in 
vegetation productivity. The greatest challenge in vegetation productivity analysis and 
interpretation is the differentiation between climate and human-induced change 
(Wessels et al., 2012). Understanding vegetation patterns, trends and rate of change is 
essential for understanding human effects on ecosystems and underpinning natural 
resource management practices including where possible rehabilitation measures can 
be effectively employed for preservation and may help for effectiveness of different 
management approaches (Prakasam, 2010).  

 
The Normalized Difference Vegetation Index (NDVI is computed using the 

Red (RED) and the near Infrared (NIR) reflectance wavebands, as (NIR-
RED)/NIR+RED), and can be considered the most commonly used remote sensing 
based index to map vegetation productivity (or ‘greeness’) and density  (Tucker, 1979) 
as well as vegetation dynamics in various ecosystems worldwide (Belone et al., 2009). 
As reported by Bai et al., 2008, Beck et al., 1990; the relationship between NDVI and 
vegetation productivity is well established; the NDVI has been shown to be related to 
biophysical variables that control vegetation productivity, such as the Leaf Area Index 
(LAI), the fraction of photo-synthetically-active radiation absorbed by vegetation and 
Net Primary Productivity (NPP). NDVI is also very useful to detect and measure land 
degradation processes, that may be defined as a long-term loss of ecosystem function 
and land productivity (Bai et al., 2008). The long time-series of the Advance Very 
High Resolution Radiometer (AVHRR) data, since 1981, are reliable source in 
identifying long-term changes in vegetation productivity (Rigina et al., 2003) 

 
Among the wide range of satellite systems providing NDVI time-series data, 

the Global Inventory Modelling and Mapping System (GIMMS) provided the most 
extended time series available so far. The GIMMS datasets are 15-day composites at 
8-km geometric pixel resolution (Dardel et al., 2014) Maximum NDVI value 
compositing was performed to correct for ‘noise’ artifacts such as cloud cover and 
cloud shadow, assumed to have a low NDVI in the time series data. The data is 
derived daily from AVHRR data streams on board of the National Oceanic and 
Atmospheric Administration NOAA) polar orbiting satellite series.  
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The GIMMS data has been pre-processed by the GIMMS Group at National 
Aeronautic and Space Administration’s (NASA) Goddard Space Flight Centre and 
corrected for residual sensor degradation and sensor inter calibration differences, 
effects of changing solar zenith and viewing angles, volcanic aerosols, atmospheric 
water vapour and cloud cover, using nonlinear empirical mode decomposition 
methods (Pinzon et al., 2004, Tucker et al., 2005). The Satellite Pour l’Observation de 
la Terre (SPOT) VEGETATION (VGT) is one of the recent sensors providing 
datasets to characterize the Earth’s surface from 1998 to present. SPOT VGT data is 
a 1-km and 10-day composite (S10) data set that is radiometrically calibrated to top of 
the atmosphere radiance, precisely georeferenced and corrected for atmospheric effect 
(Zhao et al., 2012; Fenshold et al., 2006). 

 
Changes in vegetation cover or productivity derived from time series based 

satellite images vegetation index (NDVI) have been widely used to map, quantify and 
analyse vegetation change and degradation (Deering et al., 1975; Landmann et al., 
2014; Le et al., 2012; Propastin et al., 2008; Walker et al., 2014; Wessels et al., 2004; 
2007, Zhang et al., 2014). Most of the studies done in West Africa (WA) were 
focussing on the Sahel zone. The longest NDVI time series data set produced thus far 
has been 26 years (1981-2006) archives developed by the GIMMS group. Therefore, 
there is a need to further extend monitoring data on vegetation productivity changes 
so that climate and human-induced effects can be accurately disentangled and more 
robust conclusions can be made as to how and where productivity changes occur over 
decades. This study aimed at using a unique combination of multi sensor remote 
sensing data to investigate the historical trends using 30 years NDVI time series data 
and rainfall data from time-series passive radar observations. We further attempted to 
determine if the mapped change is rather human and/or climate influenced by 
exploring the relationship between NDVI, rainfall and land cover change, derived 
from 30-meter Landsat data, over the Bani river Basin in Mali, West Africa. The 
integrative mapping results allowed for the interpretation of change and change 
factors within the Bani river basin in the past 30 years.  
 
Study area 

 
The study area (Figure 1) covers the Sahelian (300-700 mm), Soudanian (700-

1200 mm) and the Soudano-Guinean (1200-1600 mm) eco-climatic zones.  
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The spatial distribution of vegetation in the study region is largely related to 
cumulative (annual) rainfall and the length of the rainy season, which varies along the 
eco-climatic gradient. Vegetation patterns on a landscape scale are determined by 
localized climatic variations and human activities such as bush clearing and 
deforestation for agricultural or energy purposes and overgrazing. Smallholder 
farming is the most common agricultural practice in the region. Millet, sorghum and 
cotton are primarily cultivated, whilst pastoralism (bovines, goats and sheep) is 
practiced throughout the study area. Woody savannas and forests are largely being 
exploited for wood and charcoal production. These activities have been intensifying 
over the last 40 years in line with increasing fuel wood demand due to population 
increases (Ruelland et al., 2008). 

 
 

Figure 1: Map Showing the Study area and the four References areas, 
Numbered Accordingly 
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Methods  
 

NDVI Time Series Data  
 
Monthly 8-km Normalized Difference Vegetation Index (NDVI) time-series 

data from 1982 to 2011 used in this analysis was created using a 10-day SPOT 
Vegetation 1-km (1998~2011) and 15-day GIMMS 8km reference data (1982~2006). 
The maximum value compositing technique (Holben, 1986) was used to firstly 
generate monthly time series data metrics for the two datasets. In a second processing 
step we resampled the SPOT VGT time series to match the coarser 8 km of GIMMS 
by spatial averaging (Fensholt et al., 2009). Lastly we applied a linear correlation 
between the two dataset using their overlapping period and then generated a new 8-
km time-series data for the 30 years observation period using GIMMS data from 1982 
to 2000 and VGT data from 2001 to 2011 (Zhang et al., 2013). 

 
Rainfall Time Series Data 

 
Since consistent and seamless rain-gauge data sets were not available for key 

stations in the study area, passive radar satellite rainfall estimates from 1998 to current 
from 25 kilometer Tropical Rainfall Measurement Mission (TRMM) were used to 
complement ground based gauge measures. As such monthly TRMM rainfall (mm) 
measures (product 3B43) were statistically compared with rain-gauge data for the 
overlapping period (1998~2002) using a t-test. The gauge rainfall data for the period 
from 1982 to 2002 was available for 40 meteorological stations. The newly and much 
improved monthly rainfall time-series data for the missing period from 2002 to 2011 
were essentially generated using a regression equation developed by Almazroui (2011). 
Using the regressions equations and inverse distance weighted (IDW) interpolation of 
monthly data from 40 meteorological stations contained within the basin, a 30-year 
rainfall time-series dataset at an 8-km grid resolution was created.   

 
Trend Calculation 
 

Long-terms per-pixel trends are a good indicator to assess the existence of any 
changes in vegetation productivity time-series data. A wide range of approaches have 
been developed by scientific communities to extract phonological metrics form time 
series data (Jönsson & Eklundh 2004; Reed & Brown 2005; Walker et al., 2014).  
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This study used Mann-Kendall (MK) monotonic trend tests, which have been 
applied in a few previous studies on remote sensing time series data (De Beurs & 
Henebry, 2004a; De Beurs & Henebry, 2004b; De Beurs & Henebry, 2005a; De Beurs 
& Henebry, 2005b).  Since NDVI time series often do not meet parametric 
assumptions the MK test was deemed suitable for this analysis (Tabari et al., 2011).  
The MK test quantifies the strength and the direction of the relationship between two 
variables. Kendall tau rank correlation coefficient is the range [-1; +1] expressing 
direct (inverse) proportionality for positive or negative tau values. The output of the 
analysis is a map of tau (t) values which are significant at the 90% level. Besides the 
MK tau, the test delivers the p-value of the trend analysis. A p-value less than 0.07 
were used as a threshold of strongly significance trend in this study. 
 
Extracting reference Land Use and Land Cover (LULC) information from Landsat 
data  

 
Several pixels with the same general trend (positive or negative) can be 

identified from the MK trend map. Land cover change data, derived from multi-
temporal 30-meter Landsat data sets, was used to explain and cross verify 
representative areas that exhibit either entirely negative MK-trends or entirely positive 
MK-trends over the monitoring period. Two positive trend areas and two negative 
trend areas were used in the cross verification (Figure 1). Essentially, the selection 
criteria were: negative NDVI and RF trend (area 1), positive NDVI and negative RF 
trend (area 2), negative NDVI and positive RF trend (area 3) and lastly positive NDVI 
and positive RF trend (area 4). Cloud-free Landsat Thematic Mapper (TM) images 
with 30-meter of resolution were acquired for the four reference areas for the 
following years; 1984 and 1986, 1999 and 2000 and 2009 and 2010. In all cases end of 
the growing season (October to December) images were used because the contrast 
between cropland and natural environment is most marked (Ruelland et al., 2009).  
The Landsat image datasets were obtained from the USGS data archives 
(http://glovis.usgs.gov). The acquired images were geometrically corrected using a 
polynomial order with ~30 Ground Control Points (GCPs) and classified using the 
maximum likelihood algorithm. The most recent images were classified first and 
validated using ground trust data for classification collected during the field trip 
conducted in the area in January 2014. Further training data was collected using very 
high resolution imagery in Google Earth. Moreover ground data on land cover and 
land use (from 1990) collected in the context of the Project Inventories of Ligneous 
Resources (PIRL) was also used.  
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The accuracy of the Landsat-based classifications was assessed using an error 
matrix, which is one of the most widely used for accuracy assessment (Lu & Weng, 
2007). A post-classification comparison change detection algorithm was used to 
determine changes in Land Use and Land Cover (LULC). This approach provides 
‘‘from–to’’ change information, for which LULC transformations can be easily 
calculated. Cross tabulation analysis was carried out to analyse the spatial distribution 
of different LULC classes and LULC changes. The rate of land conversion was 
computed using this formula (Manandhar et al., 2009): 

 

100
1

12(%) 



AreaD

AreaDAreaDChange                               (1) 

 
Change area = D2 –D1, where D1and D2 are the area of the target vegetation 

cover type at the beginning and the end of the study period, respectively. 
 
Results and Discussion 
 
Trend in Vegetation and Rainfall 

 
The MK long-term trend analysis results using monthly NDVI and rainfall 

trends for the period 1982 to 2011 are shown in Figures 2 and 3 respectively. The 
NDVI trend showed areas with decreasing and increasing NDVI. The total pixels 
affected by significant decreases in monotonic trend at p-value less than 0.07 was 155 
(8% of the total area) while 934 pixels (49% of the total area) showed a significant 
positive trend using the same p-value threshold.  
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Figure 2: Trends in NDVI from Time-Series for 1982~2011      Figure 3: Trends 
in Rainfall from Time-Series for 1982~2011 

 
Positive trends were mainly located in Soudano-Sahelian zone; where near to 

natural vegetation was still well represented. Ruelland et al., 2010 reported that most 
of these areas were still covered by natural vegetation.  The most marked land cover 
change in the study area was the reduction of closed woodland with an increase in 
tree parkland agriculture. In contrast, decreasing trends were mostly found across the 
transitional zone between the Sahel and the Sudanian. The land cover were dominated 
by cropland (>70 %) which increases from one year to another due to the 
development of cotton cultivation. The analysis moreover showed that there are no 
significant changes or trends in seasonal rainfall in almost the whole study area. The 
analysis showed only a few portions of the total area with significant positive trend at 
p-value < 0.07. Our observations are in agreement with those of Bégué et al., 2011, 
who observed a similar no significant rainfall trend in the same area during the period 
from 1982 to 2005 for almost the whole catchment. 
 
Land Conversion Rate 

 
The reference land cover data from the four sampling area, were grouped in 

four categories: cropland, natural vegetation, settlement and others.  
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The cropland class is characterized by scattered trees (canopy coverage from 
20% onwards) in spatial arrangement with annual crops (mainly millet and sorghum). 
Crops are usually harvested between October and November and the cropping season 
is followed by a fallow period that lasts from December to April. The natural 
vegetation classes, such as presented, are made up by near to natural woody 
vegetation and perennial or annual grassland. The categories “others” include bare 
lands or rural settlement structures. . The table 1 shows the rate of land conversion 
for the entire study period and all the four reference sites. Generally, decrease of near 
to natural vegetation could be mapped in all of the Landsat reference sites and 
temporal sequences. The total near to natural vegetation lost was about 63.47% and 
22.83% for area (1) and (2), while it was 8.35% for area (3) and 13.39% for area (4). 
The ‘cropland’ class increased for 564.86% in area (3); 62.17% in area (4); 35.79% in 
area (2) and 16.22% in area (1). In area (3) the class “others” decreased by 87.01%, 
whilst it increased for 791.12% in area (1); 134.15% in area (2) and only 1.39% for 
area (4).   

 
Table 1: NDVI and Rainfall Trends Associated with Landsat Based Land 

Cover Change (In Ha) Mapped for the Four Reference Sites 
 

   Land cover change in % (1980s-2000s) 
Sites NDVI RF  Others Settlement Cropland Vegetation 
Area #1 -2 -2  791.56 501.12 16.22 -63.47 
Area #2 2 -2  134.15 0 35.79 -22.82 
Area #3 -2 2  -87.01 0 564.86 -8.35 
Area #4 2 2  1.39 0 62.17 -13.39 
 

These results are in concordance with Ruelland et al., 2010, who reported the 
reduction of natural vegetation and simultaneously an increase of farmlands in West 
Africa agro-ecosystems over the past few decades.  

 
Correlation of NDVI trend with cumulative rainfall and rate of land cover 

change The vegetation index and the rainfall for the reference pixels were scored 
following their positive or negative trend (table1). Table 2 shows the descriptive 
statistic distribution of variables used for the correlations. 
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Table 2: Basic Statistic for Variables Used 
 

Variable Obs. without missing data Minimum Maximum Mean Std. deviation 
NDVI 4 -2.000 2.000 0.000 2.309 
RF 4 -2.000 2.000 0.000 2.309 
Others  4 -87.010 791.560 210.023 398.203 
Settlement 4 0.000 501.120 125.280 250.560 
Cropland 4 16.220 564.860 169.761 264.072 
Vegetation 4 -63.470 -8.350 -27.007 25.038 
 

Spearman correlation was performed to quantify the relationships between 
NDVI decline/increase rainfall trend and rate of land cover change.  

 
 A negative correlation between vegetation and settlement was found (Table 

3), implying that urbanisation induced vegetation decline. Similarly, the positive 
spearman correlation of 0.89 between cropland, natural vegetation and rainfall 
illustrates that increases in rainfall trends in some areas were related to increases in 
semi-natural vegetation cover or cropland. 
 

Table 3: Spearman Correlation Matrix between NDVI, Rainfall and Rate of 
Land Cover Change 

 

Variables NDVI RF 
Vegetation Index 1 0.000 
Rainfall  0.000 1 
Others (Bare land & Burn Area) 0.000 -0.894 
Settlement -0.577 -0.577 
Cropland 0.000 0.894 
Natural vegetation 0.000 0.894 
 

 The results of this study showed that trends in NDVI for the period 1982 to 
2011 can be explained by both climate, i.e. rainfall variability and human factors such 
as expansion of croplands, urbanization, and decreases of near to natural vegetation. 
The Spearman correlation revealed a high correlation coefficient between the trend in 
NDVI, RF and rate of land cover change. Some authors mentioned linkages between 
population growth and environmental degradation in Africa (Cleaver & Schreiber, 
1994).  Other authors, i.e. Charney et al., 1975; Stancioff et al., 1986 cited evidence of 
negative rainfall trends and frequent droughts in the Sahel, causing soil erosion and 
vegetation declines. 
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There is however number of publications arguing the reverse – namely 
improved land management as a result of growing population e.g. Elmqvist and 
Khatir, 2006, Hilhorst and Coulibaly, 1998. Indeed, cropland expansion that usually 
accompanies population growth in rural areas does not necessarily follow a 
monotonic trend, and subsequent agricultural land management by smallholders 
encompasses a diversity of practices that are far from being immutably detrimental to 
the natural resource base. Across Sudano-Sahelian Africa there are numerous 
examples of increases in fallow land due to livelihood diversification, labor constraints 
(Elmqvist and Khatir, 2006), indigenous promotion of sustainable natural resource 
management (Hilhorst and Coulibaly, 1998) and more generally improved land care in 
conjunction with a growing population (Tappan and McGahuey, 2007). 
 
Conclusion 

 
The 30-year (1982-2011) of NDVI time-series data analysed has provided a 

good assessment of the vegetation productivity change and its linkage to climate and 
human activities. The finding of this study can be summarized as follows: the NDVI 
time-series showed significant increasing and decreasing trends for 49% and 9% of 
the study area, respectively. The rainfall time-series showed increased trend but 
significant for only a portion of the study area. The long-term trend in vegetation was 
correlated with rainfall and rate of land cover conversion. The correlation coefficient 
provided useful information for land cover dynamics in the area. It has a high 
relationship between the NDVI and RF long-term trend. The results of this study 
provide spatially explicit and temporally good and rich information of vegetation 
productivity dynamic at local scale. This is an important input for assessing the impact 
of climate change on vegetation for biophysical modelling. It also improves our 
knowledge of the drivers of vegetation productivity changes. The obtained 
information can be used for replication since it was based on freely satellite data. The 
study suggests that NDVI can be useful for general cover monitoring and planning. 
However it would be good to add to the analysis other landscape components like 
population density and soil degradation information. 
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