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Abstract  
 
 

The Niger River Basin (NRB) in West Africa is drought-prone. This study evaluates 
and compares the performance of three drought indices in the Upper Niger 
subwatershed, two of which drought managers in the region are already used to, the 
Standardized Rainfall Anomaly Index (SAI) and Bhalme and Mooley Drought Index 
(BMDI). The third one is the Standardized Precipitation Index (SPI). A time series of 
the three indices were derived using 52 years growing season monthly station rainfall 
(April-October), regionalized into areal rainfall. The calculated statistical relationships 
of the indices provides diagnostics for their performance evaluation based on six 
decision criteria, whose weightings were determined using pairwise comparison of 
the Analytic Hierarchy Process (AHP) approach. Two-parameter gamma distribution 
is the best fit and most suitable for transformation of rainfall distribution in the 
region. SPI requiring equiprobablity transformation of the data, satisfied the 
normality assumption, whereas it was violated by others. The three drought indices 
showed similar temporal trends in all the time scales, with the historical extreme 
climatic anomalies in the basin well captured. Results further showed that SPI, which 
is more robust and sensitive to dryness, identified 42 and 17 moderate and extreme 
drought events respectively, against 35 and 7 captured by the SAI and BMDI that are 
less robust. In this paper, we find that SPI ranked first among other meteorological 
drought index in the Niger River basin, having the highest priority weight of 0.6123, 
with the inconsistency in the pairwise comparison with the tolerable limit (i.e. CR < 
0.1). 
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1. Introduction 

 
In 2009 drought experts drawn from 22 countries and organizations such as 

United States Drought Mitigation Center (NDMC), the World Meteorological 
Organization (WMO), the United States National Oceanic and Atmospheric 
Administration (NOAA), and the United Nations Convention to Combat 
Desertification (UNCCD), among others, met at the University of Nebraska Lincoln 
to review drought indices in use around the world and to assess their capacity and 
suitability for a number of applications. At the end of the workshop, the group issued 
the Lincoln Declaration in which they stated among others that “the National 
Meteorological and Hydrological Services(NMHSs) around the world are encouraged 
to use the SPI to characterize meteorological droughts and provide this information 
on their websites, in addition to the indices currently in use”( WMO, 2009, 2012). 
This declaration was subsequently endorsed by the 16th World Meteorological 
Organization Congress in 2011. Given both pedigree and imprimatur, the SPI rapidly 
emerged as the quasi-official meteorological drought index around the world and 
numerous authors have espoused its strengths and desirable characteristics (e.g. 
Edwards and McKee, 1997; Guttman, 1998; Hayes et al., 2011; Blain, 2012). Notably, 
it has the ability to compare drought events in regions with different climates, as well 
as at different or multiple time scales (Moorhead, et al., 2015). Thus, the SPI has 
brought standardization to an important area of drought research hitherto 
characterized by region-specific and often disparate indices, which often lead to 
confusion about how to properly utilize and interpret them (Quiring, 2009). 
Furthermore, the index is probability-based, computationally simple and sensitive to 
dryness (Hayes et al., 2011; Blain, 2012). 

 
However, a number of studies have shown that SPI underestimates the 

intensity of drought / wetness when the rainfall is very low / very high relative to the 
actual rainfall and rainfall deviation (Naresh Kumar et al., 2009). By implication, very 
low (i.e. – 2.0 or less) or very high (i.e. + 2.0 or more) values of SPI do not 
correspond to very low or very high rainfall. The authors attributed this problem of 
the underestimation of dryness/wetness to non-normality found between the lower 
and upper ranges of the SPI. Turkes and Tatli (2009) also noted that the SPI 
underestimates the probabilities of occurrence of extreme precipitation (both drought 
and wet conditions) in Turkey when compared to the modified time-varying SPI. In 
the Modified SPI, the authors estimated the scale parameter by dividing the long-term 
average by shape parameter.  Historically, researchers and drought managers within 
the drought-prone Niger River Basin, West Africa, have utilized the Standardized  
Rainfall Anomaly Index (SAI; also called the Lamb Index, (Tarhule and Lamb, 2003; 
Dai et al., 2004) or the Sahelian Standardized Rainfall Index (Ali and Lebel 2009). 
Another index also used, albeit less widespread, in the basin is the Bhalme and 
Mooley Drought Index (BMDI; Oladipo, 1993, 1995; Aremu and Olatunde, 2012; 
Olatunde, 2013). Each of these indices calculates drought differently.  
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The WMO call for the adoption of the SPI provides an opportunity to 
evaluate the relative performance of these three indices at various rainfall time scales 
in the Niger Basin, West Africa. Such evaluation serves the following purposes: First, 
to have a better overview of the individual performance relative to other indices of 
the same category. Second, to ascertain the indices suitability for detecting, 
monitoring and early warning of the different aspects of drought of concerns, and 
whether they make sense for the problem in context. Third, to show the ability of the 
indices to consistently detect spatial and temporal variations during drought events. 
Fourth, to highlight the level of differences in the severity of identified drought, if 
any, between non-probability-and probability-based indices that depend on historical 
rainfall distribution as input for drought characterization. This paper is structured as 
follows: section two describes the background to the study, which highlights the 
strengths and weaknesses of the evaluation criteria. In sections three and four, which 
are the study area, methodology including indices performance evaluation criteria and 
results and discussion respectively; while the conclusion appears in section five. 

 
2.0 Background to Study 

 
Drought is simultaneously the most damaging of all natural hazards (Pulwarty 

et al., 2014) and the least understood. A creeping phenomenon, it begins innocuously 
and becomes noticeable only through its impacts over a region (Wilhite, 2006; ARCS 
2007). The end of drought is similarly difficult to predict (Moorhead et al., 2015), and 
what constitutes drought varies from one region to another (WMO, 2006). By 
representing drought as a single numeric value, drought indices greatly facilitate 
analysis and comparison over time and space. Used in combination with an 
appropriate threshold, all relevant drought characteristics, namely onset, drought 
magnitude, intensity and cessation, can be derived (Yevjevich, 1967; Dracup et al., 
1980; Agnew and Chappell, 2000; Paulo and Pereira, 2006). 

 
Considering that each index calculates drought differently, it is often useful to 

compare several indices using the same regional data. To do so, Yevjevich et al. (1978) 
proposed eight quantitative criteria, namely, (i) Characteristics, statistical properties 
and variability of droughts indices, (ii) Detailed analysis of a major historical drought, 
(iii) Indices adaptation to the local climate, (iv) Unbounded index values, (v) Spatial 
invariability, (vi) Flexible time scale, (vii) Data requirements and availability, and (viii) 
Interpretability. Review of these criteria is available in literature (Ntale and Gan , 
2003). In recognition of the desirable properties of an ideal drought index, proposed 
by Redmond( 1991, 2002) ( i.e. drought Indices should not be too complex; nor 
overly simplified; should offer improved information over raw values; its values 
should be open-ended( because, unprecedented behavior yields unprecedented 
values); statistical properties and sensitivities thoroughly evaluated before operational 
usage;   
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Historical time series of data must be readily available, recent values must be 
quickly computable and compactible for routine practical usage etc.). Quiring (2009) 
used six qualitative criteria namely (1) robustness; (2) tractability; (3) scalability; (4) 
sophistication; (5) transparency; and (6) dimensionality. It was originally proposed by 
Keyantash and Dracup, (2002). The rationale behind each evaluation criterion is given 
below.   

 
Robustness: refers to the degree of sensitivity of the indices to any 

perturbation in the process; as well as the ability of the indices to measure drought 
over a wide range of climatic conditions (Keyantash and Dracup, 2002). It further 
refers to the ability of the index to be spatially and temporally comparable 
(Narasimhan and Srinivasan, 2005), and indices not easily affected by seasonality (e.g. 
summer and winter values should be comparable anytime). A robust index should also 
be correlated with and sensitive to drought impacts and discriminate among drought 
impacts (Quiring, 2009). It is a very important decision criterion for a drought index. 
Though, a robust index may not be necessarily the most appropriate index to use, 
especially if it cannot be calculated easily using readily available data. This is a critical 
limitation of the criteria that needs to be recognized while assigning weight.  

 
Tractability: measures whether the drought index can be practically calculated 

easily, using readily available data (Keyantash and Dracup, 2002). Hence, it refers to 
the simplicity of the computational algorithm of the indices. It is extremely important 
that an ideal drought index should be easy to calculate using readily available data 
(Quiring, 2009). Therefore, a tractable drought index should provide affirmative 
answers to such questions as: Is the data requirement of the index easily met? Is the 
drought index easy to compute? Is the index useful in the context of the drought 
problem in the concerned or vulnerable area? So this criterion is as important as the 
robustness. 

 
Transparency: It evaluates the rationale behind the index construction, its 

clarity and whether the index is understandable to both the scientific community, 
decision-makers, the affected public and / or user community. For example, a good 
drought index should be scientifically defensible and useful (Quiring, 2009). It also 
represents the general utility of the drought index ( Keyantash and Dracup, 2002). 

 
Sophistication: It evaluates the indices for scientific merit; especially, it judges 

whether the indices accurately represent important physical aspects of the drought 
event. The decision criterion depends on the quality of the available data and 
fundamental accuracy of the assessment method, including the validity of inherent 
assumptions in the index. However, the main limitation to sophisticated approach, is 
that it requires more data, which makes the approach less transparent and tractable 
(Quiring, 2009).  
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Hence, for the purpose of operational use, an index that is easy to use and 
easy to understand will have more credit than a sophisticated index that is difficult to 
calculate (Quiring, 2009).  

 
Extendability: It measures the degree to which an index can be extended 

across time. Hence, a good index should be open-ended, and extendable to place 
current and future drought events into historical context (Quiring, 2009).  The 
approach considers how readily available are the data to capture both past and future 
are events.   

 
Dimensionality: It refers to the connection of the drought index with the 

physical world (Keyantash and Dracup et al., 2002). An ideal drought index should 
have a unit that has physical meaning (i.e. mm of soil water, percent of normal 
precipitation) rather than strictly dimensionless unit.  

 
The major task in this method is therefore, how to measure each of these 

evaluation criteria. This is achieved by assigning weight to each of the criteria. Usually, 
the purpose of assigning weight to parameters affecting drought is to convey the 
importance of each parameter relative to other parameters (Keyantash and Dracup, 
2002; Quiring, 2009). Therefore, we defined weight as a value assigned to an identified 
evaluation criterion, which indicates its importance relative to other criteria under 
consideration (Jacek, 1999). The larger the assigned weight, the more important is 
such criterion in the overall utility of the drought index. 

 
There has been a number of decision criteria weighting procedures proposed 

in literature, which are often based on experts’ judgement, field observations, previous 
experience and knowledge (Hwang and Yook, 1981; Keeney and Raiffa, 1993; Baker 
et al., 2002); however, the most popular procedures include pairwise comparison, 
rating, ranking and trade-off analysis. Others include; average weight method, 
deviation weight method, optimal weight method, entropy weight method. Often they 
differ in terms of their degree of easiness to use, accuracy and understanding on the 
part of the decision-makers. Since weighting of drought parameters by arbitrary 
means could induce subjectivity and this have to be removed to eliminate biases, there 
is need for an unbiased procedure. To deal with such uncertainty in the relative 
importance of weightings, we adopted the use of pairwise comparison approach in 
this study, in the context of Analytic Hierarchy Process (AHP) proposed by Saaty 
(1980).  
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2.1 The Analytic Hierarchy Process (AHP) Method 

 
The AHP is a methodology for structuring, measurement and synthesis, and 

generally based on the well-defined mathematical structure of consistent matrices and 
their associated right-eigenvector’s ability to generate true or approximate weights 
(Saaty, 1980, 1994). Basically, the AHP approach structures a complex problem by 
decomposing the problem into goal ( problem definition), decision criteria, and / or 
alternatives, then compares the criteria, or alternatives  with respect to a criterion, in a 
natural, pairwise mode. To achieve this, the AHP uses a fundamental scale of absolute 
numbers (1 – 9) that has been proven in practice and validated by physical and 
decision problem experiments (Forman and Gass,2001).This fundamental scale 
captures individual preferences with respect to quantitative and qualitative attributes 
just as well or better than other scales ( Saaty, 1980, 1994).  The method converts the 
individual preferences into ratio scale weights, and the resultant weights used to 
compare and rank the alternatives, thereby assisting the decision-maker in making a 
choice. The AHP has been applied to a wide range of problem situations such as the 
allocation of scarce resources, forecasting and selecting among competing alternatives 
in a multi-objective environment (Forman and Gass, 2001); as well as in drought 
vulnerability assessment( Babaei et al 2013) and water resources management(Yilmaz 
and Harmancioglu, 2010). The method has the advantage of considering only two 
criteria at a time. It is easy to use, precise and with high trustworthiness (Jacek, 1999). 
Despite its wide applicability, the axiomatic foundation of the AHP carefully delimits 
the scope of the problem environment (Saaty, 1986). 
 
3.0 Study Area and Methodology 

 
This paper focuses on the Upper Niger subwatershed, also called West 

Africa’s water tower (Fig. 1). The basin area is 120,000 km2 with a mean elevation of 
463m (Vetter et al., 2015). The figure also describes the topography of the Niger basin 
and the distribution of the rainfall stations. Annual rainfall averages is 1300 mm 
(1960-2010). The rainfall is highly seasonal, concentrated within the months of April 
to October. Eighty percent of the rain is received within the months of July, August, 
and September. The dominant land cove or vegetation are forest, savanna and 
cropland. Temperature is high all year round 28.6oC (1901 – 2006) (Tarhule et al., 
2014). 
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3.1 Methods 
 
The data analyzed consists of monthly rainfall totals at 6 stations for the 

period 1950-2001, located within the Upper Niger subwatershed. This period of 
analysis was selected to put the pre-drought periods (humid), the major droughts of 
1970s and 1980s in the basin, and the recovery periods of 1990s into historic context; 
and test the ability of the indices to represent the variabilities in the time series.  The 
data was obtained from the database of the Global Historical Climatology Networks 
(GHCN-NOAA). The point station rainfall data were first areally regionalized using 
the Thiessen Polygon approach in ArcGIS (v10) software to determine the area of 
influence of each individual station (Kasei et al., 2010). This regionalized rainfall was 
then accumulated into five different time scales (1, 3, 6, 9 and 12 months) and used to 
derive a time series of the SAI, SPI and BMDI at various time scales.   

 
The SAI uses the normalization procedure introduced by Kraus (1977). Lamb 

(1982) showed that the index can be regionalized as follows: 
 

................................................................................................... (1) 

 
Where  is seasonal total rainfall at station i,   and   are respectively 

mean and standard deviation of the seasonal rainfall. While simple conceptually and 
analytically, the SAI has been found useful because the standardization process 
reduces rainfall at stations with different characteristics (amounts, timing, and 
distributional patterns) and locations to a common unit, making it directly 
comparable.  
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The main limitations of the SAI are that the method assumes rainfall data 
follows a Gaussian distribution; thus, applying the Z-score transforms the distribution 
to standard normal distribution. This assumption is not always satisfied, especially at 
time scales of months or finer. 

 
Like the SAI, the Bhalme and Mooley Drought Index (BMDI; Bhalme and 

Mooley, 1980), uses monthly precipitation as the sole climatological input for 
assessing drought intensity. It models the percentage departure of monthly 
precipitation from the long-term averages weighted by the reciprocal of the 
coefficient of variation (Agwata, 2014). To estimate the BMDI, the monthly statistical 
properties of the precipitation time series such as mean (µ) and standard deviation (σ) 
is first computed, and the moisture index (M) is obtained from: 

 
  …………………………………………………. (2) 

 
Usually, the anomalies for nonhomogeneous areas or larger areas having 

different climatic conditions are not comparable. To overcome such problems, the 
common practice is to normalize the difference (anomalies) using the standard 
deviation of the precipitation series (Dunkel, 2009) as shown in equation 2. Fig. 2 
illustrates the concept of the BMDI procedure. It is based on the idea that the 
extreme drought condition from the monthly highest accumulated negative M could 
be given by the least-squares regression equation which describes the relationship 
between accumulated M and duration, k.  Based on such regression analysis, the 
BMDI duration factor coefficients 0.21 and 132 were calculated for the study area. 
The duration factor is location specific, and depends on the regression coefficients, 
the slope and intercept. The general form of the BMDI applied in this study is as 
expressed below; 

 
…………………………………………… (3) 

 
where I_k and I_(k-1) are drought intensities for the kth and (k-1)th  months 

respectively,  is the moisture index for kth month. Conceptually, BMDI is a 
simplified version of the well-known and widely used Palmer Drought Severity Index 
(PDSI) (Alley, 1984; Ntale and Gan, 2003). While the BMDI provides satisfactory 
measures of the current condition of agricultural drought (Bhalme and Mooley, 1980; 
Oladipo, 1985; Ntale and Gan, 2003), it has sensitivity to, and therefore frequently 
overestimates, wet conditions. 
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Fig. 2: Plot of cumulative moisture index M versus period k (months) for four 

levels of drought episodes 
 
The Standardized Precipitation Index (SPI) is a probability-based drought 

index developed by McKee et al. (1993). Similar to the SAI, the SPI calculates the 
number of standard deviations at which the observed cumulative rainfall at a given 
time scale deviates from the long-term mean. Yet, unlike the SAI, the SPI does not 
assume normality, providing instead an opportunity for researchers to base the 
standardization procedure on the most appropriate statistical probability distribution 
underlying the data series. With the SPI method, values at different locations and 
climes can be computed at a different time scale; such as 1, 3, 6, 12, 24 and 48 
months, which separates the different types of drought (McKee et al., 1993) i.e. 
meteorological, agricultural and hydrological droughts.   

 
Three general steps involved in the computation of SPI are as follows: (i) 

selection of monthly long-term precipitation record (30 years or more), and 
accumulate the time series to desired time scales, (ii) determining the probability 
distribution that best describes the data and compute the probability density function 
(PDF) (iii) transforming the CDF of the selected distribution into a standard normal 
distribution, which is achieved through inverse normal distribution(Turkes and Tatli, 
2009). 
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The precipitation time series in the study area exhibit strong non-stationarity 
(Tarhule et al, 2013). Therefore to calculate the SPI, it is necessary to transform the 
time series first so that its distribution is nearly normal (WMO, 2000). Guided by 
previous studies (Guttman 1998, 1999; Guenang and Kamga, 2014), we fitted five 
different distribution functions (i.e. Lognormal, Exponential, Log-logistic, Weibull 
and Gamma) to the monthly rainfall series using Mathwave and evaluated the 
goodness of fit using Chi-square. The results (Appendix 1) showed that the best 
fitting distribution is the gamma type two distribution.The probability density 
function (pdf) of the gamma distribution is (McKee et al. 1993):  

 
for x>0..........… ……..……......(4) 

where: α > 0, β > 0, x > 0           
 
The cumulative distribution function (CDF or (G(x)) is expressed as; 
 

…..….….......... (5) 

…………................................ (6) 

By substituting   , equation 3 yields the incomplete gamma function, expressed 

as below:  
……………….………………. (7) 

where  
α , β, x is the shape parameter, scale parameter and precipitation amount 

respectively. 
 
For α > 0, the gamma function Γ (α) is a quantity defined by eqn. 5 
 

dx          …….………………...........(8) 
where, 
Γ (α) is the gamma function, x is precipitation amount. 
Fitting the gamma distribution to the rainfall data requires estimating α and β. 

These parameters were estimated using Maximum Likelihoods (Thom (1958) : 
    

………………..(9)                                                                                                                  
                                                                                                                           

 
……………………..(10) 
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Where 
 

 
 
..…………………………………………………..(11)

  
where α and β are the parameters of the distribution, A is the difference 

between the logs of arithmetic and geometric means,   is the mean of the cumulative 
precipitation, n is number of precipitation observations. The SPI is computed using 
the program code developed by U.S. National Drought Mitigation center (US-
NDMC).The program code is freely available at http://drought.unl.edu/Monitoring 
Tools / DownloadableSPIProgram.aspx.   

 
It would be a relatively straightforward matter to compare the three drought 

indices if the theoretical range of index values were the same- that is, if it could be 
assumed that a -1 on the SPI scale is directly comparable to -1 on the BMDI scale. 
Because this is not the case, we opted instead to specify a threshold rainfall deficit on 
the raw data and then estimated the index value corresponding to that deficit. The 
specified thresholds are as shown in Table 1. These thresholds were obtained using 
percentile ranking approach as applicable in the U.S. Drought Monitor (Svoboda et al 
2002). We define drought of moderate or worst intensities with 20th percentile or less. 
The 20th percentile threshold defines a non-exceedance probability of drought that 
occurs once in 5 years. This threshold represents rainfall deficit of 63%, 38% 23%, 
22%, 29%, 21% and 40% for the months of April, May, June, July, August, 
September, and October respectively, from the long-term average(1950-2001), which 
is in agreement with the findings of Downing et al (1987). Report on the assessment 
of 1980s drought prepared for the U.S. Agency for International Development 
(USAID) to aid decision on humanitarian intervention by the U.S. Government, 
documented that 20% to 40 % deficits of rainfall below the long-term average in West 
Africa as well as other parts of the continent leads to drought of moderate intensity, 
while deficits over 40% below the average results in severe drought (Downing et al., 
1987). In this region also, monthly rainfall frequently less than 25% of the long-term 
average (i.e. more than 75% below the average) has been found to cause significant 
livestock deaths, especially over Senegal, Mauritanian and Gambia. Arguably, this 
livestock died as a result of dearth of forage and water due prevailing drought then.  
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Table 1 Monthly Drought severity classification based on non-exceedance 
probability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2

 Drought Indices Performance Evaluation Criteria 
To evaluate the performance of the three indices, the statistical relationships 

of the drought indices were first calculated to provide diagnostics for their 
performance evaluation. As a result, the following analyses were carried out: (i) time 
series analysis to explore the effect of the different time scales on the frequency, 
duration and severity of drought; (ii) Pearson correlation analysis between SPI and 
SAI, SPI and BMDI, and SAI and BMDI; (iii) linear regressions between SPI and 
SAI, SPI and BMDI, and SAI and BMDI; (iv) comparison of identified drought 
characteristics; and (iv) Comparison of drought indices during major historical 
drought events of 1970s and 1980s. 

 
The next step in determining which drought indices is the most appropriate 

for monitoring drought conditions in the Niger River basin is to evaluate all the three 
candidate drought indices using modified version of the evaluation criteria proposed 
by Quiring (2009).   
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The approach was originally developed by Keyantash and Dracup (2002) to 
select the most appropriate agricultural, meteorological, and hydrological drought 
indices for monitoring drought in Oregon. The revised version of their approach is 
adopted in this study to select the most appropriate meteorological index for 
monitoring drought at the basin. We judge the overall utility of each of the candidate 
drought indices using six evaluation criteria identified based on the ideal 
characteristics of drought index (Redmond, 1991; Keyantash and Dracup, 2002; 
Narasimhan and Srinivasan, 2005).  

 
These six qualitative criteria are robustness, tractability, scalability, 

sophistication, transparency, and dimensionality. Following the identification of the 
evaluation criteria, the next challenge is how to determine their weights, and the 
weights of the candidate indices based on these criteria. Usually, weights are assigned 
to the evaluation criteria by the researchers or decision-makers based on their 
knowledge, experience and perception of the problem (Yilmaz and Hamrmancioglu, 
2010). In this study, the Saaty’s pairwise comparison method of the Analytic 
Hierarchy Process (AHP) (Saaty, 1980) approach is used in the weightings of the 
criteria and the each of the candidate drought indices. The AHP is a method of 
converting subjective judgements of the researcher to a set of weights by pairwise 
comparisons between all criteria.  Fig. 3 is a conceptual diagram of how Saaty’s 
method has been applied in structuring the problem of evaluating the three drought 
indices, the SAI, BMDI and SPI. As evidenced from the conceptual framework, the 
six evaluation criteria have to be weighted first, to establish their relative importance. 
Then, using the candidate indices weightings corresponding to each of the evaluation 
criteria and the relative importance of the criteria, the candidate indices are ranked 
and evaluated accordingly. The Saaty’s method consists of three major steps, namely; 
(i) the generation of pairwise comparison matrix, (ii) the criterion weight computation, 
and (iii) the consistency ratio estimation.  

 

Fig. 3 Framework for the Saaty’s Pairwise comparison of AHP approach of 
Criteria Evaluation 
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3.2.1 The Development of Pairwise Comparison Matrix 

 
The major problem with pairwise comparison method is how to quantify a 

choice that is subjectively made by the researcher or decision-maker in numerical 
terms during their evaluation. Usually, this comparisons are quantified using a 
standard scale proposed by Saaty (1980), which has values ranging from 1 to 9 (Table 
2) to rank the researcher’s choice. According to Saaty’s scale, the values of the 
pairwise comparisons are members of the set: {9, 8, 7, 6, 5, 4, 3, 2, 1, 1/2, 1/3, 1/4, 
1/5, 1/6, 1/7, 1/ 8, 1/9}. This scale numbers indicate how many times more 
important or dominant one element is over another element with respect to the 
defined criterion or property with respect to which they are being compared (Saaty, 
2008). To generate the pairwise comparison matrix, the elements of the matrix are 
randomly determined according to the scale proposed by Saaty (1980). Since the 
entries into the matrix are randomly selected, this implies that each of the two 
elements being compared have equal chance (probability) of being ranked better than 
the other.  These elements consist of ranks (1 – 9) assigned to the preferred choice 
out of the two elements being compared using the Saaty’s Scale numbers (Xu et al 
2008; Dijkstra, 2010).  

 
In real life decision-making process, the problem of choice is always extremely 

difficulty, because of conflicting objectives (Pazek and Rozman, 2000); even when 
numbers are obtained from a standard scale (Saaty, 2008). There is still a problem of 
linking the difference between the two elements being compared to the Saaty’s scale 
of ranking or scoring decisions. For example, how to measure the differences to 
ascertain that one element is moderately, strongly or very strongly more important 
than the other is still a challenge.  To overcome this problem, in this study, we 
prepared a summary table of collection of information, comprising the ideal drought 
index desirable properties, statistical relationships of the indices and questionnaires 
connected to each evaluation criteria, to offer explanation to the decisions leading to 
the pairwise comparison ranking and weighting assignments (Table 3).  

 
The answers to the questionnaires informed by the combination of the 

information in the table provided the diagnostics for the random selection of the 
pairwise comparison ranks quantifying the researcher’s judgement. As an illustrative 
example, suppose index A in the Table 3 is strongly better or highly ranked than index 
B, and index C is the least desired one as far as robustness criteria is concerned. By 
implications, when index A is compared to index B, the researcher has determined 
that index A is to be classified between “moderately to strongly important” and very 
strongly to very important than index B. Thus, the corresponding comparison 
assumes the value of 5. A similar interpretation is given for the rest of the entries in 
the matrix.  According to Saaty (1986), this matrix must have the following three 
properties: 



Okpara J.N. and Tarhule, A.                                                                                                 15 
 
 

 

Intensity of 
Importance

Definition / Interpretation Explanantion 

1 j and k are Equally Important
Two activities contribute equally to 
the objective

2
j is slightly to moderately 
important than k

3
j is moderately more important 
than k

Experience and judgement slightly 
favor one activity over another

4
j is moderately to strongly  more 
important than k

5
j is stronglyl more important than 
k

Experience and judgement strongly 
favor one activity over another

6
j is strongly to very strongly  more 
important than k

7
j is very strongly more important 
than k

An activity is favored very strongly 
over another; its  dominance  is 
proved in practice

8
j is very strongly to extremely 
more important than k

9
j is extremely or absolutely more 
important than k

The evidence favoring one activitiy 
over another is of the highest possible 

order of affirmation

Reciprocity: It states that if ajk = x, then akj = 1/x, with 1/9 < x < 9. Where ajk 
represents the comparison between element j and element k. By implications, once 
the upper triangular matrix is determined during the comparison process, the lower 
triangular matrix can be defined by akj = 1/x.  
i. Homogeneity: It states that if the elements j and k are considered to be equally 

important then,  
 

ajk = akj = 1 and ajj = 1 for all j 
 
ii. Consistency: ajl * alk = ajk is  satisfied for all 1<  j, k, l < n 
 

With regard to the reciprocity property, only n (n-1) / 2 comparison are 
needed to build a matrix with a dimension of n x n, for a property to reciprocate. For 
example, the comparison matrix is said to be reciprocal, if the criterion A  is twice as 
preferred to criterion B, then it can be concluded that B is preferred only one-half as 
much as  criterion A. As a result, if criterion A is given a score of 2, relative to 
criterion B, then criterion B should receive a score of 1/ 2 when compared to 
criterion A. By applying this logic, the upper right and lower left side of the pairwise 
comparisons matrix are derived in this study. With regards to homogeneity property, 
the diagonal element of the matrix is assigned the score of 1, which represents equally 
preferred criteria when comparing anything to itself. A times, consistency infrequently 
occurs due to innate subjectivity of the decision-maker, which significantly affects the 
pairwise comparison. This property is meant to show an existing inconsistencies in 
the comparisons. According to Saaty (1986), the degree of inconsistency is measured 
by calculating the Consistency Ratio (CR) of the matrix.  

 
Table 2 Fundamental Saaty’s Scale for Pairwise Comparison 
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Table 3:  presentation of information to aid decision on weight assignment 
(Note: Y = Yes, N =No) 
 

3.2.2 The Computation of the Criterion Weighting 
 

To compute the criteria weightings, the following mathematical operations are 
involved.  
 
i. The summation of the values in each column of the pairwise comparison matrix 
ii. Dividing each element in the matrix by its column sum total, which results in the 

normalization of the pairwise comparison matrix. 
iii. Then, the average of the elements in each row of the normalized matrix is 

calculated. These averages provide an estimate of the relative weightings of the 
criteria being compared. These averages are also referred to as eigenvectors.  
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3.2.3 The Estimation of the Consistency Ratio (CR)  
 

The Consistency Ratio (CR) is defined as the ratio of Consistency Index (CI) 
to random Index (RI) (Saaty, 1986).  The purpose of the consistency test, is to test the 
null hypothesis (H0) that the relative importance ratios in the pairwise comparison are 
randomly selected from the Saaty’s 17 value scale {9, 8, 7, 6, 5, 4, 3, 2, 1, 1/2, 1/3, 
1/4, 1/5, 1/6, 1/7, 1/ 8, 1/9} (by implications  H0 < 0.1 and H1 > 0.1; where H1 id 
alternative hypothesis). Considering the that pairwise comparison matrices were 
generated without any concern for consistency, Saaty (2005) suggested as a rule of 
thumb to accept the inconsistency when CR < 0.10, indicating that the pairwise 
comparison matrix is of reasonable level of consistency; whereas CR > 0.10, indicates 
inconsistent judgements. In such cases, the revision of the original values in the 
pairwise comparison matrix is advised (Saaty. 1986). The CI is known to provide a 
measure of departure from consistency, that is, the difference between the maximum 
eigenvalue (ƛmax) of the pairwise comparison matrix and the eigenvalue (n) of 
perfectly consistent matrix. This is expressed as below. 
 
CI = (ƛmax – n) / (n -
1)………………………………………………………………….. (12) 
 

Where ƛmax is the maximum of the eigenvalues (i.e. the average value of the 
consistency vector), and n is the number of evaluation criteria parameters. The RI 
value is read from a statistical table that is proposed by Saaty (1980). This is presented 
in Table 4.  
 
Table 4 Random Inconsistency Indices (RI) for n = 1,2 …..15 proposed by 
Saaty(1980) 
 
No. of 
criteria(n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Random 
index(RI) 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.6 
 
The following mathematical operations are involved in the determination of CR: 
 
i. The sum of the weighted vector is determined by multiplying the obtained weight 

of the first criterion by the first column of the original pairwise comparison 
matrix, followed by the multiplication of the second weight criterion with the 
second column. The process is continued for n criterion and finally, summed up 
for each row.  
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ii. Then, the consistency vector is determined by dividing the weighted sum vector 

by the criterion weights earlier calculated.  
 
Following this procedure, weights were assigned to the six evaluation criteria 

in this study as shown in Table 5. Subsequently, by repeating the process, the three 
indices (SAI, BMDI and SPI) were evaluated against each of these criteria.  
 
Table 5 Drought Index Evaluation Criteria and their Relative Importance  
 

Criterion Relative Importance (%) 
Robustness 30 
Tractability 27 
Transparency 21 
Sophistication 7 
Extendability 7 
Dimensionality 7 

 
4.0 Results and Discussion  
   

As seen in the boxplot of Fig. 4 various statistical properties of SPI, SAI and 
BMDI have been highlighted for different time scales. The critical examination of the 
indices’ behavior on the individual months (April- October), revealed few differences 
in their means and variances. These differences were further subjected to significance 
test, using t-test and F-test distributions respectively. Results showed that the 
observed differences in the means and variances of the time series of the indices are 
in general not statistically significant at 95% confidence interval. The distribution of 
each index time series presented in Fig. 5 show that SPI, which required equi-
probabilty transformation, identified anomalies that describe a near normal 
distribution, while SAI and BMDI anomalies describe a skewed distribution. This 
result prompted the need for testing the normality of the indices’ time series, using 
the Shapiro-Wilk normality test in SPSS statistical software, with the null hypothesis 
that the data (time series) are Gaussian. As evidenced from the  results, SPI had 
highest test (W)-statistics values > 0.959 (Table 6), signifying that time series 
significantly followed Gaussian distribution at 95% confidence interval, whereas the 
SAI and BMDI showed significant departure from normality due to either skewness 
or kurtosis or both.  

 
The temporal behavior of the SAI, BMDI and SPI values is presented in Figs. 

6 and 7, the negative values in these standardized anomalies indicate drier than long-
tern average periods and positive values indicate wetter periods. Generally, the figure 
shows similar temporal trends by the three drought indices in all the time scales, with 
1, 3, 6, and 12 months’ time scales displayed in the figure.   
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The pre-drought humid periods of 1950s, the major drought periods of 1970s 
and 1980s and the recovery periods of 1990s in the Niger basin were well identified.  
Also, on short-term scales such as 3-months SAI, BMDI and SPI series, the drought 
severities were highly variable, and on several occasions becoming less than -1 and 
greater than 1, corresponding to the 20th percentile threshold depending on the 
month. Arguably, these observed variations are due to a seasonal component always 
present in the rainfall data. Furthermore, there is no recognizable long-term trend 
component. 
 

Fig. 4 Boxplot showing the statistical properties of the three indices at 
different time scales and months 
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Fig. 5 Typical distributions of the drought event identified by the indices  
during the month of June 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  6     Time series of 1, and 3- Months SAI, BMDI and SPI over the upper 
Niger basin 
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Fig. 7:Time series of 9, and 12 - Months SAI, BMDI and SPI over the upper 
Niger basin 
 
Table 6 Comparison of the Normality test Results between SPI SAI and BMDI 

 
Table 7 Pearson correlation coefficients (r) of the SPI vs SAI, SPI vs BMDI and 
SAI and BMDI 
 

 
The indices statistical relationships tested by fitting a linear regression trend to 

their time series, showed a slope nearly equal to zero, signifying the absence of a 
significant trend. A drought event begins when the indices’ values become 
continuously negative below an established threshold and ends when the indices’ 
values become continuously positive above the threshold. The drought severity 
becomes the cumulative of the indices’ values within the drought duration. In this way 
Figs. 6 and 7 can be used to estimate the drought severity or magnitude and the 
duration. Further results show that the three indices were significantly correlated (see 
the Pearson correlation coefficient in Table 7). The correlation between SPI and SAI 
increases as the time scales increases.  

Month 
                     SPI                     SAI                  BMDI   
W-
statistics  Significance 

W-
statistics Significance 

W-
statistics Significance 

 

Apri 0.959 0.198 0.78 0 0.78 0  
May 0.982 0.604 0.968 0.169 0.968 0.177  
June 0.967 0.163 0.932 0.005 0.932 0.005  
July 0.981 0.555 0.968 0.18 0.963 0.101  
Aug 0.985 0.76 0.962 0.097 0.972 0.262  
Sep 0.982 0.634 0.947 0.022 0.966 0.149  
Oct 0.96 0.078 0.846 0 0.893 0  

   Events     Cases 1-Month 3-Month 6-Month 9-Month 12-Month 

All 
SPI vs SAI 0.982 0.981 0.987 0.996 0.997 
SPI vs BMDI 0.901 0.895 0.88 0.893 0.907 
SAI vs BMDI 0.913 0.905 0.887 0.888 0.904 

Dry 
SPI vs SAI  0.970 0.996 0.992 0.998 0.999 
SPI vs BMDI 0.979 0.974 0.984 0.976 0.969 
SAI vs BMDI 0.942 0.973 0.967 0.968 0.965 

Wet 
SPI vs SAI  0.95 0.953 0.973 0.997 0.996 
SPI vs BMDI 0.97 0.934 0.944 0.949 0.959 
SAI vs BMDI 0.99 0.97 0.951 0.973 0.965 
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However, the correlation between SPI and BMDI, and between SAI and 
BMDI slightly decreases as the time scale increases, except for the 12-month time 
scale as evidenced in the three event categories considered in table 6 (i.e.  All, dry and 
wet event). In the event column of Table 7 ‘All’ indicates normal, dry and wet 
conditions included in the time series; ‘Dry’  indicates events whose SPI values are 
negative; ‘Wet’ indicates events whose SPI values are positive. In addition, during dry 
events the indices show higher correlation than during the wet events. These notable 
patterns are supported by several previous studies (Wu et al., 2001; Choi et al., 2013).  
   

The regression analysis shows a monotonic increasing relationship among all 
of the various indices (Fig. 8). In comparison with SAI, the SPI has a higher slope of 
0.9619 and 0.9203 and R2 (coefficients determinant) of 0.9436 and 0.957 for the 
shorter time scale 3 and 6 months; unlike the decreased slope of 0.8803 and 0.8585 
and R2 of 0.96 and 0.9609 for longer time scales of 9 and 12 months. Hence, as the 
slope decreases, the R2 increases. Also, the scatter diagrams of SPI versus the SAI in 
Fig. 8 show that the SAI generally appears more positive or wetter than the SPI in 
both time scales. For example, when the SPI is -2.35, the corresponding SAI is -1.93, 
and when SPI is + 3.14, the corresponding SAI is + 4.84.   Such relationship was not 
found in the case of scatter diagram of SAI and BMDI 9, graph not displayed. The 1-
month time scale was not considered in this comparison because the occurrence of 
monthly rainfall deficiency is a common feature of climate; as a result the 1-month 
time step may not describe the drought situation very well. 

 
Fig. 8 The scatter diagram of SAI, BMDI and SPI 
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As further seen in Fig. 9 under different percentile thresholds, over the past 
50 years (1950-2001), SAI and BMDI captured the occurrence of 14 exceptional 
drought events while SPI captured 11(approx. 21%  less). In terms of extreme 
droughts occurrence, however, SAI and BMDI identified 7, while SPI identified 17 
(approx. 59% more). The three indices captured 21 equal number of severe drought 
events. In terms of moderate droughts, SPI, SAI, and BMDI captured 42, 35, and 35 
events respectively. Most of the time, therefore, SPI identified the highest number of 
occurrences of drought. Table 8 shows the details of the monthly drought events as 
identified by each of the indices. The numbers in the parentheses represent the 
wetness frequency. Some of the drought events captured by SPI were not identified 
by SAI and BMDI, such as 1966, 1974, 1985 droughts.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Frequency of drought intensities category captured by the various 
indices 
 
Table 8 Monthly distribution of drought occurrences and their intensities cate 
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The ability of the indices to represent major historical droughts in the basin 
were investigated, and results show that all the three indices at 3 months’ time scale, 
and from July 1972 to May, 1975 (34 months duration period) were experiencing a dry 
period (for 3-month time scale) (Fig. 10); but with 9-month time scale, the period of 
the dryness is from Mid-1971 to July 1975(50 months duration periods). The 
maximum negative values of the 3-month SPI, were -2.20 for October 1973, while 
SAI and BMDI were -1.86 and -2.20 respectively; and for the 9-month SPI is -2.47 for 
May, 1974, while SAI and BMDI were -2.04 and -1.27 respectively. However, for the 
same time scales 3 and 9 months, from September 1981 to end of 1989 (99 months 
duration period), was dry period (for 3-month time scale); though the 1980s drought 
continued into 1990s), (Fig. 11); with 9 month time scale however, from June 1982 to 
end of 1989 (90 months duration period), was dry period. The maximum negative 
values of the 3-month SPI is -2.24 for May 1985, while SAI and BMDI were-1.68 and 
-1.76 respectively. SPI indicates more severe drought than SAI and BMDI most of 
the time in all the time scales, except in the 3-months’ time scale where BMDI 
indicates more severe drought than other indices. 
 

Fig. 10 Comparison of 1970s SAI, BMDI and SPI along with rainfall at different 
time scales 
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Fig. 11 Comparison of 1980s SAI, BMDI and SPI along with rainfall at different 
time scales 
 
4.1 Performance Evaluation of the three Drought Indices 
 

The results of the weightings of the six evaluation criteria carried out using 
Saaty’s pairwise comparison of the Analytic Hierarchy Process (AHP) approach 
showed that robustness criterion has the highest weight of 30% due to its relative 
importance. This is closely followed by tractability and transparency with relative 
weightings of 27% and 21% respectively. Then sophistication, extendability and 
dimensionality criteria had equal weights of 7% each (Table 4).  The results of the 
acceptable inconsistency level in the pairwise comparison of the criteria adjudged by 
the computed values of Consistency Index (CI) and Consistency Ratio values (CR) 
were 0.0091 and 0.0074 respectively; which are less than 0.1. Saaty proposed that for 
CR< 0.1, the level of inconsistency in assigning the pairwise comparison rank is 
tolerable (Saaty, 1980, 1986, 2005).  This weighting is slightly different from the 
relative weights used by Quiring (2009).  
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For instance, Quiring (2009) obtained the same relative weight of 30% for 
robustness, but had 25%, 15%, and 10% each for tractability, transparency, and 
sophistication, extendability and dimensionality respectively; as against 27%, 21 and 
7% obtained in this paper. With the weightings of the evaluation criteria achieved, the 
performance of each of the three indices SAI, BMDI and SPI was subsequently 
evaluated following the same procedures for the criteria evaluation.  Table 8 is the 
pairwise comparison matrix of the ranks assigned to each indices, for each of the six 
criteria. The normalized pairwise comparison matrix is obtained by dividing each 
element in the matrix by its column sum. The results of the eigenvector that defines 
the index weight for the criteria in consideration obtained by averaging across the 
rows of the normalized pairwise matrix is shown in Table 9. The product of the 
obtained values of the eigenvector and the relative importance weight of the 
respective six evaluation criteria produced the final weightings and rankings of the 
indices and result showed that SPI is the most highly ranked meteorological drought 
index in the Niger River basin, followed by SAI which slightly ranked ahead of BMDI 
(Table 10). Overall, the SPI had a rating of 0.6123. The emergence of SPI as the most 
ranked meteorological drought index is supported by works of Quiring, (2009) and 
Keyantash and Dracup, (2002). SPI was also identified as the most appropriate index 
for monitoring meteorological drought in Iran (Morid et al., 2006).   
 
Table 8 showing the pairwise comparison matrix generated for each of the six 

criteria 
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Table 9  The  Eigenvectors obtained for  SAI, BMDI and SPI for each of the  
Decision Criteria 
           
Index Robustness Tractability Transparency Sophistication Extendability Dimensionality 
SAI 0.260 0.129 0.161 0.158 0.333 0.200 
BMDI 0.106 0.277 0.149 0.187 0.333 0.200 
SPI  0.633 0.595 0.690 0.655 0.333 0.600 
CI 0.019 0.003 0.057 0.015 0.000 0.000 
CR 0.033 0.005 0.098 0.025 0.000 0.000 
 

Table  10  Meteorological Index Evaluation 

 
5.0 Conclusion 
 

Drought is simultaneously the most damaging of all natural hazards and the 
least understood. This study, therefore, evaluates and compares the performance of 
three drought indices, the Standardized Rainfall Anomaly Index (SAI), Bhalme and 
Mooley Drought Index (BMDI) already used by the local drought managers and 
standardized Precipitation Index (SPI) based on rainfall. Two-parameter gamma 
distribution was used to transform the skewed rainfall data, because it best fit the 
rainfall frequency distribution in the region. Prior to the indices evaluation, their 
statistical relationships were first explored. SPI requiring equiprobablity 
transformation of the data, satisfied the normality assumption, whereas it was violated 
by SAI and BMDI.  

 
The three drought indices showed similar temporal trends in all the time 

scales, the 1, 3, 6, and 12 months’ time scales respectively. Also, the pre-drought 
humid periods of 1950s, the major drought periods of 1970s and 1980s and the 
recovery periods of 1990s in the Niger basin were well identified. Based on variable 
monthly 20th percentile thresholds, SPI identified 42 and 17 moderate and extreme 
drought events respectively, against 35 and 7 captured by SAI and BMDI over the 
past 50 years (1950-2001). The SAI time series generally appears more positive or 
wetter than the SPI in both time scales; and vice-versa with that of SPI.  When the 
SPI is -2.35, the corresponding SAI is -1.93, and when SPI is + 3.14, the 
corresponding SAI is + 4.84. Such relationship was not found in the case of SAI and 
BMDI.  

Index               Weighting Ranking 
SAI 0.1974 2 
BMDI 0.1903 3 
SPI  0.6123 1 
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The three indices were evaluated based on six qualitative decision criteria, 
using an appropriate weighting system that accounts for the relative importance of 
each criterion, and results show that SPI is the most ranked meteorological drought 
index in the Niger River basin with a priority weight of 0.6123. On the basis of the 
computed consistency index and consistency ratio values, the weighting judgment is 
acceptable; because the null hypothesis is accepted. 
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