Assessing Long-Term Trends In Vegetation Productivity Change Over the Bani River Basin in Mali (West Africa)
Abstract
Using time series of Normalized Difference Vegetation Index (NDVI) and rainfall data, we investigated historical vegetation productivity trends from 1982 to 2011 over the Bani River Basin in Mali. Statistical agreements between long-term trends in vegetation productivty, corresponding rainfall and rate of land cover change from Landsat time-series imagery was used to discern climate versus human-induced vegetation cover change. Spearman correlation was used to investigate the relationship between metrics of vegetation, rainfall trends and land cover change categories. The results show there is a positive correlation between increases in rainfall and some land cover classes, while some classes such as settlements were negatively correlated with vegetation productivity trends. Croplands and Natural Vegetation were positively correlated (r=0.89) with rainfall while settlements have a negative correlation with NDVI time series trend (r=-057). Despite the fact that rainfall is the major determinant of vegetation cover dynamics in the study area, it appears that other human-induced factors such as urbanization have negatively influenced the change in vegetation cover in the study area. The results show that a combined analysis of NDVI, rainfall and spatially explicit land cover change provides a comprehensive insight into the drivers of vegetation cover change in semi-arid Africa.
Full Text: PDF DOI: 10.15640/jges.v2n2a2
Abstract
Using time series of Normalized Difference Vegetation Index (NDVI) and rainfall data, we investigated historical vegetation productivity trends from 1982 to 2011 over the Bani River Basin in Mali. Statistical agreements between long-term trends in vegetation productivty, corresponding rainfall and rate of land cover change from Landsat time-series imagery was used to discern climate versus human-induced vegetation cover change. Spearman correlation was used to investigate the relationship between metrics of vegetation, rainfall trends and land cover change categories. The results show there is a positive correlation between increases in rainfall and some land cover classes, while some classes such as settlements were negatively correlated with vegetation productivity trends. Croplands and Natural Vegetation were positively correlated (r=0.89) with rainfall while settlements have a negative correlation with NDVI time series trend (r=-057). Despite the fact that rainfall is the major determinant of vegetation cover dynamics in the study area, it appears that other human-induced factors such as urbanization have negatively influenced the change in vegetation cover in the study area. The results show that a combined analysis of NDVI, rainfall and spatially explicit land cover change provides a comprehensive insight into the drivers of vegetation cover change in semi-arid Africa.
Full Text: PDF DOI: 10.15640/jges.v2n2a2
Browse Journals
Journal Policies
Information
Useful Links
- Call for Papers
- Submit Your Paper
- Publish in Your Native Language
- Subscribe the Journal
- Frequently Asked Questions
- Contact the Executive Editor
- Recommend this Journal to Librarian
- View the Current Issue
- View the Previous Issues
- Recommend this Journal to Friends
- Recommend a Special Issue
- Comment on the Journal
- Publish the Conference Proceedings
Latest Activities
Resources
Visiting Status
Today | 3 |
Yesterday | 57 |
This Month | 2480 |
Last Month | 2930 |
All Days | 1016722 |
Online | 2 |